LEY DE OHM.

(Práctica da ESO – curso 2015 – 2016).

Objetivos:

A).- Comprobar que existe una relación lineal entre la tensión que soporta una resistencia y la corriente que pasa a su través.

B).- Reconocer que la resistencia eléctrica representa el grado de oposición al paso de la corriente eléctrica.

Observación:

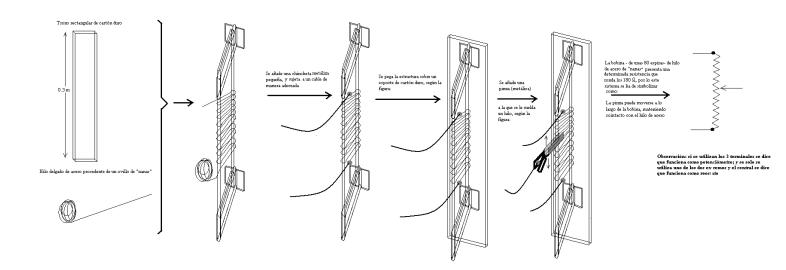
1.- La Ley de Ohm implica el significado siguiente:

$$V_1/I_4 = V_2/I_2 = V_3/_3 = \dots = R$$

Esta ley la mas simple de la electrodinámica.

<u>Materiales</u> .- 2 polímetros, resistencia de unos 33 Ω , hilo de acero de "nanas", hilo de cobre conductor delgado, pila de 4.5 V, pinzas metálicas pequeñas.

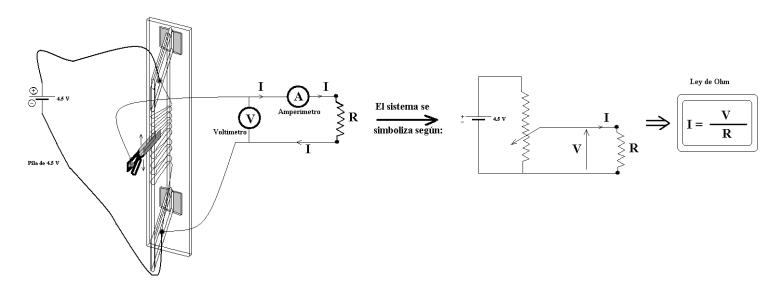
Además del material de siempre: tijeras, alicates, alambre delgado, cartón y pegamento

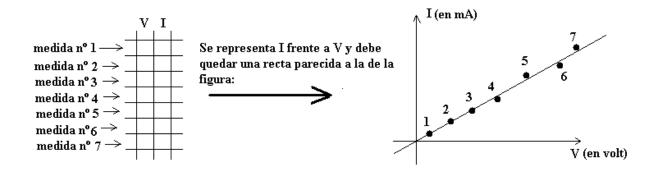

Procedimiento:

A) Construcción de un potenciómetro; como hay que obtener 4 o 5 valores de tensión, se podrían utilizar varias pilas de 4.5 V, pero como hay varios grupos implicaría tener un gran número de ellas.

Para ello vamos a construir lo que se llama "un potenciómetro" (se llama así pero NO mide potencias), realizado con un hilo fino de acero procedente de un estropajo comercial, llamado " de nanas".

Se toma unos 2 m de este hilo y se arrollan sobre un rectángulo de cartón duro de largo, unos 30 cm de largo formando una especie de bobina (de una capa) y sujeta esta a un soporte, de manera adecuada a dicho cartón.


Y a continuación se coloca una pinza metálica, todo ello según la figura:


Observación: si se rompiera el hilo a medio camino, se puede insertar el trozo siguiente atándolo al extremo libre del anterior; se refuerza con un hilo fino de cobre y luego se suelda el nudo formado, haciendo que este repose en el borde opuesto al que se desliza la pinza, y así poder continuar hasta llegar al final.

B).- Montaje del circuito.- Después de seleccionar las funciones de amperímetro y voltímetro de sendos polímetros, se construye un circuito con la pila de 4.5 V, de manera que esta en serie el terminal central con el amperímetro y la resistencia a considerar y sobre esta se ha de colocar en paralelo el voltímetro que debe estar en serie con dicha resistencia.

Todo ello, según la figura:

C).- Una vez montado el circuito, se desliza la pinza a diversas posiciones y se anotan los valore de V e I , y se representan en un papel milimetrado (se acostumbra pone el como eje de ordenadas la intensidad y el eje de abscisas la tensión.

Observaciones:

- 1.- La recta siempre debe pasar por el origen (es trivial, ya que cuando $V = 0 \Rightarrow I = 0$).
- 2.- El valor de la cotangente (o la inversa de la tangente: $1/\tan \alpha$) del ángulo que forma la recta con el eje de las abscisas, corresponde al valor de la resistencia en volt/amp = Ohmios
- 3.- En la práctica si la intensidad esta en miliamperios (porque es mas cómodo) y la tensión esta en voltios, se tiene que el valor de la resistencia vendrá dado en kilohmios ($k\Omega$).
- 4.- Cuando la recta es poco inclinada el valor de la resistencia es alta; y cuando mas vertical sea la recta a mayor valor de la resistencia corresponderá.
- 5 .- Cuando se trata de una resistencia la gráfica corresponde a un recta; pero si se coloca un diodo se obtendría un curva que sería muy parecida a una exponencial.
- 6.- La resistencia eléctrica es un parámetro que indica la dificultad en el paso de la corriente eléctrica a su paso
- 7.- La resistencia de un conductor en forma de prisma (o cilindro) de una sustancia es directamente proporcional a la longitud del conductor e inversamente proporcional a la superficie de la sección de dicho conductor.

Al valor de la constante de proporcionalidad se llama resistividad, es un valor característico de cada sustancia; se suele dar en el S.I como Ohm x m

Se tiene:

 $R = \rho_x L/S$, siendo ρ la resistividad de la sustancia que forma el conductor.

En resumen: $R = V/I = \rho_x L/S$

8.- Se distingue:

Aislante : $\rho = 0$

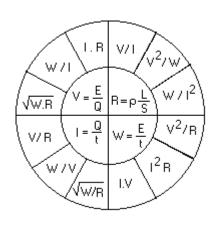
Conductor perfecto $\rho = \infty$

- 8.-A la inversa de la resistencia se llama conductancia: G; y a la inversa de la resistividad: σ , se llama conductividad.
- 9.- Teniendo en cuenta lo anterior y definiendo como densidad superficial de corriente: J = I / S, se puede tener una expresión muy importante (punto de vista microscópico) de la ley de Ohm, esta nueva expresión es:

 $J = \sigma E$, donde es la conductividad y E es el campo eléctrico.

10.- Cuando el elemento a considerar es distinto a una resistencia, se obtendrá una curva: I = f(V) y en la cual el valor del cociente V/I en ese punto corresponde a la resistencia estática; y el valor de la pendiente en un punto cualquiera se llama resistencia dinámica (derivada en ese punto) .

Estas 2 últimas expresiones se darán en cursos posteriores.

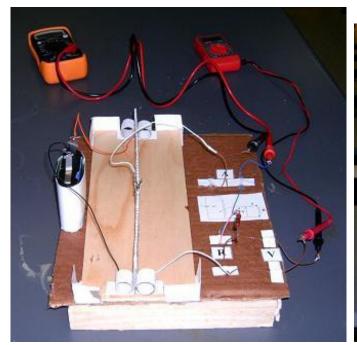

Repaso: Completar los cuadros siguientes:

Re	epaso: Completa	ar los cuadros	s siguientes:			
PROP.	SIGNIFI-	EXPRESI	UNIDAD	S ÍMBO-	APARATO DE	OBSERVACIONES
	CADO	ÓN	(S. I.)	LOS	MEDIDA	ADICIONALES
MAGN.						
\	†					
Carga						
eléctrica						
Intensidad						
eléctrica						
Tensión o						
voltaje						
Resistencia						
Resistencia						
Energía						
eléctrica						
Potencia:						
Capacidad			MONTA	E Serie:		
			COMPONENTE	3616.	Parale	
				Ĭ		
[\I.B	/ /				
Frecuencia		$\langle \cdot \rangle$	Resistencia:			
l /	V= R	Y				
	 (
/	_ <u> </u>	7				
\		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Condensador:			
\	\	\ /	Condensador:			
	\checkmark	<i></i>				
	~~					

Completar los cuadros siguientes (soluciones):

PROP. SIGNIFICADO EXPR	E- UNIDAD S ÍMBO-	APARATO DE	OBSERVACIONES
------------------------	-------------------	------------	---------------

		SIÓN	(S. I.)	LOS	MEDIDA	ADICIONALES
MAGN.						
Carga eléctrica	Magnitud activa responsable de todos los fenómenos eléctricos	Q = I . t	Coulom- bio: C	$1C = A \cdot s$	Culombimetro, o también: Amperímetro + cronómetro	Cargas de distinto signo se atraen. Cargas del mismo signo se repelen
Intensidad eléctrica	Movimiento ordenado de cargas eléctricas.	I = Q/t	Amperio:	1A = (1C)/(1 seg)	Amperímetro, en general polímetro	Siempre en serie con el receptor de energía
Tensión o voltaje	Energía asociada a la carga eléctrica	V = E / Q	Voltio: V	1 V = (1 J)/(1 C)	Voltímetro, en general: polímetro.	Siempre en paralelo con el receptor de energía
Resistencia	Oposición de un cuerpo al paso de la corriente eléctrica	$R = \rho L / S$	Ohmio:	$\begin{vmatrix} 1 \Omega \\ = (1V) / (1 \\ A) \end{vmatrix}$	Ohmímetro, o también: amperímetro + voltí- metro; en general Polímetro	Ley de Ohm: I = V / R
Energía eléctrica	Capacidad para efectuar un trabajo.	$E = Q \cdot V$	Julio: J	1 J = (1N).(1 m) = (1C).(V)	Calorímetro, o también: watímetro + cronómetro	$E = F \cdot d = W \cdot t$ Ley de joule: $E = 0.24 I^2 R \cdot t$
Potencia:	Energía disipada en la unidad de tiempo.	$W = E / t$ $= I \cdot V$	Watio: W	1 W =(1J)/(1 s) = (1A).(1V)	Watímetro, o también voltímetro + amperímetro.	$W = I^2x R$ $= V^2 / R$
Capacidad.	Almacenamiento de carga eléctrica	C = Q / V	Faradio: F	1F = C / V	Capacitímetro o Polímetro.	$Q = C \cdot V;$ $C = \varepsilon_0 \cdot S / d \cdot \cdot$ $E = \frac{1}{2} \cdot C \cdot V^2.$
Frecuencia.	N° de oscilacio- nes en la unidad de tiempo	v = n° (osc)/t	Hertzio: Hz	1 Hz = (1 osc) / seg.	Frecuencímetro.	v = 1 / T, siendo T el periodo del ciclo



MONTAJE COMPONENTE	Serie: - <u>1</u> <u>2</u>	Paralelo:	_
Resistencia: R $-\sqrt{\frac{1}{1}}$ $R = \frac{V}{1}$ $1\Omega = \frac{1V}{1A}$	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\frac{1}{R_{\text{equiv}}} = \frac{1}{R_1} + \frac{1}{R_2}$	
Condensador: C ${ }$ $C = \frac{Q}{V}$ $1F = \frac{C}{V}$	$C_1 \qquad C_2$ $\frac{1}{C_{\text{equiv}}} = \frac{1}{C_1} + \frac{1}{C_2}$	C_{1} C_{2} $C_{Tot} = C_{1} + C_{2}$	

Lo que tienen que "cantar" el alumno es lo siguiente:

- 1.- Se monta el circuito de con una pila de 4.5 V, un potenciómetro hecha a base de de hilo de "nanas" de unos 0,5 m aproximadamente y una resistencia determinada.
- 2.- Se coloca el amperímetro de manera que la resistencia a considerar debe ponerse siempre en serie con el circuito que suministra la tensión, y el voltímetro siempre debe ponerse en paralelo con la dicha resistencia.
- 3.- Se mueve la pinza metálica a lo largo del hilo delgado de acero y anotan los diversos valores de la tensión e intensidad y se confecciona la tabla correspondiente.
- 4.- Estos valores se representa en un papel milimetrado, tomando como eje de ordenadas la intensidad (en mA) y en el eje de abscisas la tensión, en voltios, que soporta la resistencia (en ohmios).
- 5.- Se tiene observa que el valor de la resistencia es la inversa de la tangente del ángulo que forma la recta con el eje de abscisas y se compara este con lo indicado por el polímetro bajo la función de ohmímetro, presentándose como un valor bastante aproximado. Y a partir de aquí los valores de los errores absoluto y relativo.

Las imagenes reales de la práctica son las siguientes:

