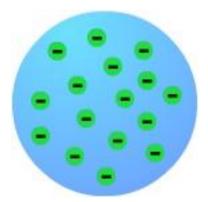
Curso	Elátama	CPI Conde de Fenosa
2012-13	El átomo	Ares

En 1808 John Dalton recupera la teoría atómica de Demócrito y considera que los átomos (partículas indivisibles) eran los constituyentes últimos de la materia que se combinaban para formar los compuestos. Todos los átomos de un mismo elemento serían iguales y distintos a los de los otros elementos, los átomos se combinan para dar grupos, llamados moléculas, que son la parte más pequeña de un compuesto y las reacciones químicas no son más que intercambios de átomos entre unas moléculas para dar otras distintas.

John Dalton (1766-1844)


J. J. Thomson (1856-1940)

En 1897 los experimentos realizados sobre la conducción de la electricidad por los gases dieron como resultado el descubrimiento de una nueva partícula con carga negativa: el electrón.

Los rayos catódicos, estaban formados por electrones que saltan de los átomos del gas que llena el tubo cuando es sometido a descargas eléctricas. **Los átomos, por tanto, no eran indivisibles.**

J.J Thomson propone entonces el primer modelo de átomo:

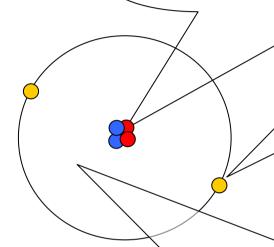
Los electrones (pequeñas partículas con carga negativa) se encontraban incrustados en una nube de carga positiva. La carga positiva de la nube compensaba exactamente la negativa de los electrones siendo el átomo eléctricamente neutro.

Primer modelo de átomo compuesto (Thomson, 1897)

Los electrones, diminutas partículas con carga eléctrica negativa, están incrustadas en una nube de carga positiva de forma similar a las pasas en un pastel.

E. Rutherford (1871-1937)

E. Rutherford realiza en 1911 un experimento crucial con el que se trataba de comprobar la validez del modelo atómico de Thomson.:

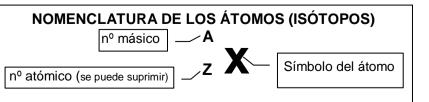

Las partículas alfa (α) , procedentes de un material radiactivo, se aceleran y se hacen incidir sobre una lámina de oro muy delgada. Tras atravesar la lámina las partículas α chocan contra una pantalla recubierta interiormente de sulfuro de zinc, produciéndose un chispazo. De esta forma era posible observar si las partículas sufrían alguna desviación al atravesar la lámina.

Como la absoluta mayoría de las partículas atraviesan el material sin desviarse, se puede afirmar que la mayor parte del átomo se encuentra vacía y que casi la totalidad de la masa y la carga positiva del átomo se encuentra concentrada en una pequeña zona del átomo (una cienmilésima parte del tamaño total del átomo), a la que se llamó núcleo

EL ÁTOMO. Conceptos fundamentales

Núcleo del átomo

- Dimensiones muy reducidas comparadas con el tamaño del átomo
- En el núcleo radica la masa del átomo
- Partículas: protones y neutrones (nucleones). El número total de nucleones viene dado por el **número másico**, **A**.
- Los nucleones están unidos muy fuertemente por la llamada "fuerza nuclear fuerte"
- El número de protones del núcleo es lo que distingue a un elemento de otro.
- El número atómico, Z, nos da el número de protones del átomo y el número de la casilla que éste ocupa en el S.P

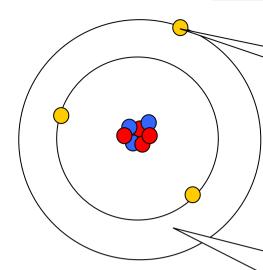

Corteza del átomo

- Los electrones orbitan en torno al núcleo.
- Los electrones (carga) son atraídos por el núcleo (carga +).
- El número de electrones coincide con el de protones, por eso los átomos, en conjunto, no tienen carga eléctrica.
- Los átomos de elementos distintos se diferencian en que tiene distinto número de protones en el núcleo (distinto Z).
- Los átomos de un mismo elemento no son exactamente iguales, aunque todos poseen el mismo número de protones en el núcleo (igual Z), pueden tener distinto número de neutrones (distinto A).
- El número de neutrones de un átomo se calcula así: n = A Z
- Los átomos de un mismo elemento (igual Z) que difieren en el número de neutrones (distinto A), se denominan isótopos.
- Todos los isótopos tienen las mismas propiedades químicas, solamente se diferencian en que unos son un poco más pesados que otros. Muchos isótopos pueden desintegrarse espontáneamente emitiendo energía. Son los llamados isótopos radioactivos

CARACTERÍSTICAS DE LAS PARTÍCULAS ATÓMICAS

Protón: $m_p = 1, 67. \ 10^{-27} \ kg = 1,007 \ u \ ; \ q_p = +1, 60 \ . \ 10^{-19} \ C$ **Neutrón:** $m_n = 1, 68. \ 10^{-27} \ kg = 1,009 \ u \ ; \ q_n = 0$ **Electrón:** $m_e = 9,11. \ 10^{-31} \ kg = 0,0005 \ u \ ; \ q_e = -1, 60 \ . \ 10^{-19} \ C$

Observa que m_p ≈ 2.000 m_e m_p \approx m_n q_p = q_e (aunque con signo contrario)

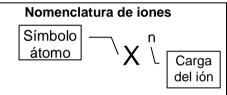

Ejemplos:

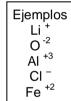
⁴ **He** : Helio- 4

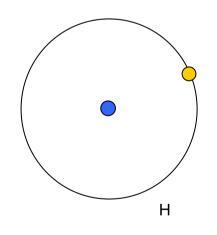
¹⁴ **C** : Carbono- 14

²³⁵ **U** : Uranio- 235

EL ÁTOMO. Formación de iones



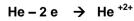

Si se comunica energía a un electrón puede "saltar" del átomo venciendo la fuerza de atracción que lo une al núcleo. Esto es tanto más fácil cuanto más alejado se encuentre del núcleo.

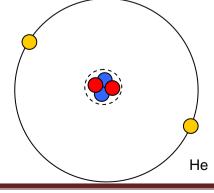

Al quitar un electrón el átomo queda con carga (+), ya que ahora hay un protón más en el núcleo que electrones en la corteza. El átomo ya no es eléctricamente neutro, tiene carga. Es un ión. A los iones positivos se les denomina cationes

En determinadas condiciones un átomo puede captar un electrón. Sucede, entonces, que al haber un electrón de más el átomo queda cargado negativamente. Es un ión negativo o **anión**

El proceso de obtener iones con carga (+) o cationes no puede hacerse añadiendo protones en el núcleo. Los nucleones están muy firmemente unidos y el proceso de arrancar o introducir uno en el núcleo implica poner en juego una cantidad enorme de energía (reacción nuclear)

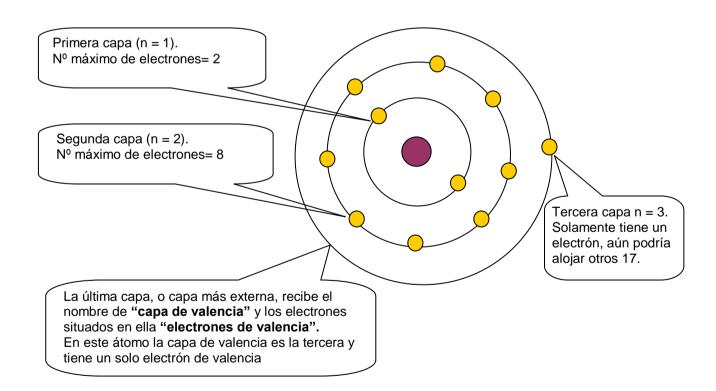
Si al isótopo más abundante del hidrógeno se le arranca su único electrón lo que queda es un protón:


De aquí que una de las formas de referirnos al protón sea como H +



H ⁺

Si al átomo de He se le arrancan sus dos electrones obtenemos el núcleo de He con carga + 2. Es lo que se llama una "partícula α "



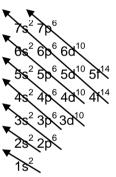
He 2+

EL ÁTOMO. Esctructura de la corteza

- Los electrones del átomo se distribuyen en órbitas o capas alrededor del núcleo.
- Las distintas órbitas se identifican por un número entero, n, llamado número cuántico principal. Así para la primera capa (la más próxima al núcleo n = 1; para la segunda n = 2; para la tercera n = 3...
- El número de capas u órbitas que posee un elemento viene dado por el número del periodo en que está situado en la tabla periódica
- Para distribuir los electrones en las capas se deben tener en cuenta unas reglas obtenidas de la experimentación:
 - 1. Las capas se van llenando por orden: primero se llena la de n = 1, a continuación n= 2, después n = 3 ...
 - No se puede empezar a llenar un nivel superior si aún no está lleno el inferior.
 - 3. El número máximo de electrones que se puede alojar en cada capa es:

n	nº máx electrones
1	2
2	8
3	18
4	32

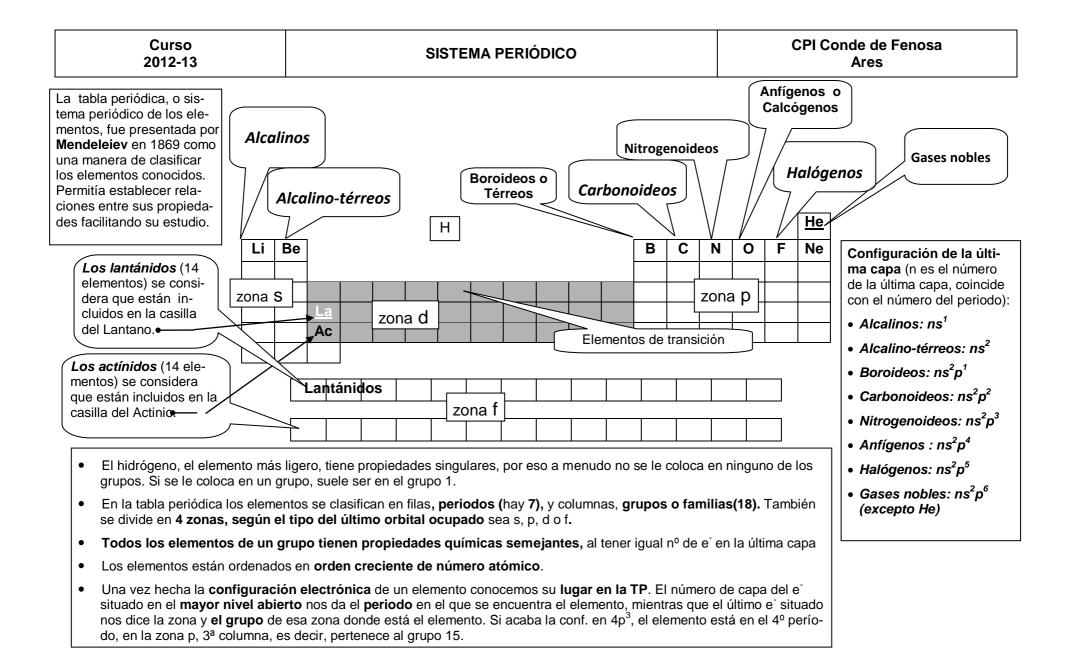
EL ÁTOMO. Configuración electrónica


 Los electrones se distribuyen en las capas ocupando los distintos subniveles u orbitales que en ellas existen

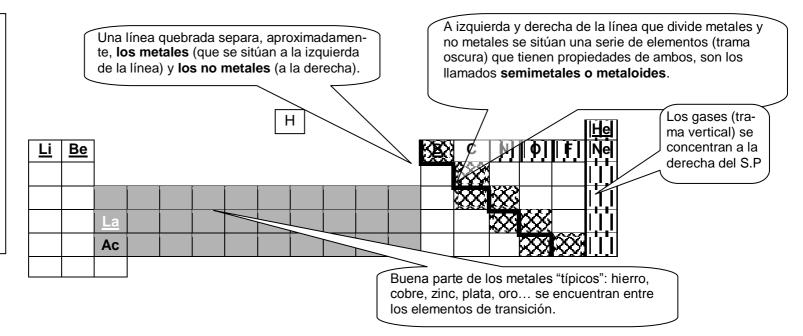
CAPA	NIVELES
1	s
2	s, p
3	s, p, d
4	s, p, d, f
5	s, p, d, f
6	s, p, d, f
7	s, p, d, f

• Cada subnivel puede alojar un número màximo de electrones.

NIVELES	Nº Max
S	2
р	6
d	10
f	14


- Los subniveles se van llenando por orden y hasta que un nivel no está totalmente lleno no se pasa a llenar el siguiente
- El orden de llenado de los niveles se obtiene a partir del diagrama de Möeller: Este orden se da debido al cruzamiento energético entre los orbitales. Es decir, al tener menos energía un orbital 4s que uno 3d se llena antes el 4s que el 3d.

Para obtener la configuración electrónica de un átomo:


- 1. Considera el número de electrones que debes distribuir. Recuerda que el número de electrones en un átomo neutro viene dado por el número atómico Z.
- 2. **Vete colocando los electrones por orden** en los niveles de cada capa. Cuando un nivel se complete, pasa al siguiente (ayúdate del diagrama de Möeller)
- 3. Cuando hayas colocado todos los electrones habrás terminado.

		Ejemplos
Li	Z = 3	1s ² 2s ¹
N	Z = 7	1s ² 2s ² 2p ³
Mg	Z = 12	1s ² 2s ² p ⁶ 3s ²
Ar	Z = 18	1s ² 2s ² p ⁶ 3s ² 3p ⁶
Ti	Z = 22	$1s^2 2s^2 p^6 3s^2 3p^6 4s^2 3d^2$
Br	Z = 35	$1s^2 2s^2 p^6 3s^2 p^6 4s^2 3 d^{10} 4 p^5$
Yb	Z= 70	1s ² 2s ² p ⁶ 3s ² p ⁶ 4s ² 3 d ¹⁰ 4 p ⁶ 5s ² 4d ¹⁰ 5p ⁶ 6s ² 4f ¹⁴
Au	Z= 79	1s ² 2s ² p ⁶ 3s ² p ⁶ 4s ² 3 d ¹⁰ 4 p ⁶ 5s ² 4d ¹⁰ 5p ⁶ 6s ² 4f ¹⁴ 5d ⁹
U	Z= 92	1s ² 2s ² p ⁶ 3s ² p ⁶ 4s ² 3 d ¹⁰ 4 p ⁶ 5s ² 4d ¹⁰ 5p ⁶ 6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶ 7s ² 5f ⁴

Todos los elementos de un mismo grupo tienen la misma estructura electrónica en su última capa o capa de valencia, de ahí que tengan unas propiedades químicas similares.

Las propiedades químicas de los elementos están íntimamente ligadas a la estructura electrónica de su última capa.

- Los gases nobles tienen una estructura electrónica especialmente estable que se corresponde con ocho electrones en su última capa: ns²p⁶ (excepto el He que tiene dos).
- Todos los elementos tiende a adquirir la estructura de gas noble. Para eso tratan de captar o perder electrones.
- Los elementos, como los halógenos o anfígenos, a los que les faltan solamente uno o dos electrones para adquirir la configuración de gas noble, tienen mucha tendencia a captar electrones transformándose en iones con carga negativa. Se dice que son muy electronegativos. En general los no metales son elementos electronegativos y tienden a captar electrones para dar iones negativos.
- Los elementos, como los alcalinos o alcalinotérreos, que están muy alejados de la configuración del gas noble siguiente, les resulta mucho más sencillo perder uno o dos electrones y adquirir la configuración electrónica del gas noble anterior. Por tanto, mostrarán mucha tendencia a formar en iones con carga positiva. Se dice que son muy poco electronegativos. En general los metales son poco electronegativos y tienden a perder electrones para dar iones positivos.
- Los metales tienen **energías de ionización bajas** (cuesta muy poco arrancarles un electrón), la razón es bastante sencilla: si tienden a ceder electrones bastará con comunicarles muy poca energía para que los cedan. No aceptan fácilmente e, por eso se dice que tienen afinidades electrónicas negativas.
- Los no metales, sin embargo, muestran **energías de ionización elevadas**: si lo que quieren es captar electrones mostrarán muy poca tendencia a ceder-los. Por tanto, habrá que comunicarles mucha energía para arrancárselos. Aceptan fácilmente e, por eso se dice que tienen altas afinidades electrónicas.

	_								
		1	1,008						
		Н							
		eno	Hidróge						
4	9,012	3	6,941						
•	Ве	Li							
io	Berili		Litio						
12	24,305	11	22,989						
)	Mg	Na							
esio	Magne	Sodio							
20	40,078	19	30,098						

CPI Conde de Fenosa Ares 4,002 **2 He**Helio

10,81	5	12,01	6	14,01	7	15,99 9	8	18,998	9	20,18	10		
В		С	;	N		0)	F		Ne			
Bor	О	Carb	ono	Nitróg	geno	Oxíge	eno	Flúc	r	Neón			
26,98	13	28,09	14	30,97	15	32,06 5	16	35,453	17	39,95	18		
Al		S	i	Р)	S		CI		Ar			
Alumi	inio	Silic	io	Fósf	oro	Azul	fre	Clor	0	Argón			

Sodio	Magnes	io																	Aluminio	Silicio	Fósf	oro	Azufı	re	Cloro		Argón	
30,098	19 40,078	20	44,955 21	47,867	22	50,942	23	51,996	24	54,938 25	55,845 2	26	58,933 27	58,693	28	63,546 29	65,409	30	69,72 31	72,64 32	74,92	33	78,96	34	79,904 3	5 83	3,798 3	36
K	Ca		Sc	Ti		٧		Cr		Mn	Fe		Со	N	i	Cu	Zn		Ga	Ge	A	S	Se)	Br		Kr	
Potasio	Calcio		Escandio	Titan	io	Vanad	dio	Cromo)	Manganeso	Hierro		Cobalto	Niq	uel	Cobre	Zinc		Galio	Germanio	Arsér	nico	Selen	nio	Bromo	ſ	Kriptón	_
85,468	37 87,62	38	88,905	91,224	40	92,906	41	95,94	42	(98) 43	101,07 4	14	102,91 45	106,42	46	107,87 47	112,41	48	114,8 49	118,7 50	121,8	51	127,6 0	52	126,90 53	3 13	5 1,29	j 4
Rb	Sr		Υ	Zr		Nb)	Мо		Тс	Ru		Rh	P	d	Ag	Cd		In	Sn	SI	b	Те)	ı		Xe	
Rubidio	Estrono		Itrio	Zircor	nio	Niob	io	Molibde	no	Tecnecio	Rutenio	0	Rodio	Pala	dio	Plata	Cadmio)	Indio	Estaño	Antim	onio	Telur	io	Yodo		Xenón	
132,91	5 5 137,33 5	6	138,9 1 57	178,49	72	180,95	73	183,84	74	186,21 75	190,23 7	76	192,22 77	195,08	78	196,97 79	200,59	30	204,4 81	207,2 82	209,0	83	(209)	84	(210) 8	5 (2	222) 8	36
Cs	Ва		La	Hf		Ta	l	W		Re	Os		Ir	Р	t	Au	Hg		Ti	Pb	В	i	Ро)	At		Rn	
Cesio	Bario		Lantano	Hafm	iio	Tánta	alo	Wolfram	nio	Renio	Osmio)	Iridio	Plat	ino	Oro	Mercurio	0	Talio	Plomo	Bism	nuto	Polon	nio	Astato		Radón	
(223)	(226)	8	(227) 89	(261)	104	(262)	105	(266)	06	(264) 107	(227) 1	80	(268) 109	(271)	110	(272) 111	(285) 1	12	(284) 113	(289) 114	(288)	115	(293)	116	(294) 11	7 (2	294) 1	18
Fr	Ra		Ac	Rf		Db)	Sg		Bh	Hs		Mt	D	S	Rg	Cn		Uut	FI	Uu	ıp	Lv	,	Uus		Uuo	
Francio	Radio		Actinio	Ruther	fodio	Dubn	nio	Seaborg	gio	Bohrio	Hassio)	Meitnerio	Darms	tadtio	Roentgenio	Copernic	io	Ununtrio	Flevorio	Unun	•	Liverm	orio	Ununsep- tio	U	Inunocti	io

	140,1	140,91 59	144,24 60	(145) 61	150,36 62	151,96 63	157,25 64	158,93 65	162,50 66	164,93 57	167,26 68	168,93 69	173,04 70	174,97 71
Lantánidos	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	Cerio	Praseodimio	Neodimio	Prometio	Samario	Europio	Gadolinio	Terbio	Disprosio	Holmio	Erbio	Tulio	Yterbio	Lutecio
	^{232,0} ₄ 90	231,04 91	238,03 92	(237) 93	(244) 94	(243) 95	(247) 96	(247) 97	(251) 98	(252) 99	(257) 100	(258) 101	(259) 102	(262) 103
Actinidos	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
· .	Torio	Protactinio	Uranio	Neptunio	Plutonio	Americio	Curio	Berkelio	Californio	Einstenio	Fermio	Mendelevio	Nobelio	Laurencio

Principales elementos de la Tabla Periódica y sus aplicaciones.

H: Hidrógeno

Grupo	Símbolo	Nombre	Notas
	Li	Litio	Baterías para coches, móviles u ordenadores.
	Na	Sodio	Nombre latino: <i>Na</i> trium. Aleaciones. Lámparas.
inos	K	Potasio	Nombre latino: K alium. Células fotoeléctricas.
Alcalinos	Alcal q8	Rubidio	Fabricación del vidrio y cerámica.
	Cs	Cesio	¹³⁷ Cs, usado en radiopterapia.
	Fr	Francio	Radiactivo. Vida corta (21 min).
	Be	Berilio	Moderador en reactores nucleares.
soe	Mg	Magnesio	Metalurgia, catalizadores.
-térr	Ca	Calcio	Metalurgia.
Alcalino-térreos	Sr	Estroncio	Pirotecnia (color rojo).
Alca	Ва	Bario	Pinturas, colorantes (color blanco).
	Ra	Radio	Radiactivo. Radioterapia, pinturas fluorescentes.
-e-	В	Boro	Metalurgia. Elevada resistencia a altas temperaturas.
Boroideos o térre- os	Al	Aluminio	Múltiples aplicaciones como metal.
eos (Ga	Galio	Semiconductor. Uso en electrónica.
roid	In	Indio	Semiconductor. Uso en electrónica
Bo	TI	Talio	Uso en electrónica.
(0	С	Carbono	Múltiples usos. Nanotubos.
rbonoideos	Si	Silicio	Chips, células fotovoltaicas.
onoi	Ge	Germanio	Semiconductor. Uso en electrónica.
Carb	Sn	Estaño	Nombre latino: <i>E</i> sta <i>n</i> num. Múltiples aplicaciones como metal.
	Pb	Plomo	Nombre latino: Plumbum. Múltiples aplicaciones como metal.
S	N	Nitrógeno	Gas inerte. Obtención bajas temperaturas (-200 ºC).
ideo	Р	Fósforo	Nombre latino: P hosphorum. Fertilizantes. Fósforos.
Nitrogenoideos	As	Arsénico	Fabricación de láseres. Medicina. Pirotecnia.
litroç	Sb	Antimonio	Nombre latino: S ti b ium. Semiconductor. Electrónica.
Z	Bi	Bismuto	Aleaciones. Productos farmaceúticos.

Grupo	Símbolo	Nombre	Notas							
ó-	0	Oxígeno	Imprescindible para la vida.							
calc	S	Azufre	Nombre latino: S ulfur. Múltiples usos industriales.							
sous o d	Se	Selenio	Fotocopiadoras, pigmentos.							
Anfígenos o calcó- genos	Te	Teluro	Metalurgia.							
An	Po	Polonio	Producción de neutrones.							
	F	Flúor	Compuestos refrigerantes. Reforzador esmalte dental .							
sou	CI	Cloro	Amplias aplicaciones industriales.							
Halógenos	Br	Bromo	Desinfectante. Aplicaciones industriales.							
Hal	1	lodo	Desinfectante.							
	At	Astato	Muy escaso. Inestable (8 h)							
	He	Helio	Gas inerte. Obtención temperaturas ultrabajas (- 260 °C)							
Se	Ne	Neón	Tubos anuncios (color rosa)							
Gases nobles	Ar	Argón	Tubos anuncios (color azul y verde)							
ases	Kr	Kriptón	Llenado lámparas fluorescentes (mezcla con gases nobles)							
ဗိ	Xe	Xenón	Llenado de lámparas de destello para fotografía							
	Rn	Radón	Radiactivo. Muy inerte.							
	Ag	Plata	Nombre latino: Argentum. Joyería. Múltiples aplicaciones							
	Zn	Zinc	Múltiples aplicaciones como metal.							
	Cu	Cobre	Nombre latino: <i>Cu</i> prum. Conductores eléctricos.							
	Au	Oro	Nombre latino: <i>Au</i> rum. Joyería. Múltiples aplicaciones.							
Elementos de transición	Fe	Hierro	Nombre latino: Ferrum. Múltiples aplicaciones como metal.							
trans	Co	Cobalto	Aleaciones. Duro y resistente a la corrosión.							
de s	Ni	Niquel	Múltiples aplicaciones como metal.							
entos	Pt	Platino	Joyería. Catalizadores.							
<u>lem</u>	Hg	Mercurio	Nombre latino: H idrar g yrium. Lámparas, explosivos.							
	Cr	Cromo	Múltiples aplicaciones como metal.							
	W	Wolframio	Aleaciones. Múltiples aplicaciones como metal.							
	La	Lantano	Aleaciones. Vidrios especiales.							
	Ac	Actinio	Radiactivo. Investigación. Fuente de neutrones.							