
FORMULACIÓN INORGÁNICA 4º ESO

Ácido sulfúrico (H₂SO₄)

<u>Índice</u>

Conceptos básicos.

- 1. Sustancias simples: elementos e iones.
- 2. Compuestos binarios:
 - 2.1. OXÍGENO CON:
 - 2.1.1. Metales y no metales
 - 2.1.2. Halógenos
 - 2.1.3. Peróxidos.
 - 2.2. HIDRÓGENO CON:
 - 2.2.1. Metal: Hidruros metálicos
 - 2.2.2. No metal

A Grupos 16 y 17 (ácidos hidrácidos)

B Grupos 13, 14 y 15

- 2.3. SALES:
 - 2.3.1. Metal + no metal (Sales neutras)
 - 2.3.2. No metal + no metal (Sales volátiles)
- 3.- Compuestos ternarios:
 - 3.1.- Hidróxidos
 - 3.2.- Oxoácidos
 - 3.2.1.- oxoácidos complejos
 - 3.2.2.- Isopoliácidos.
 - 3.3.- Oxoaniones.
 - 3.4.- Oxosales.

Consideraciones previas.

<u>Fórmulas químicas.</u> las fórmulas representan las sustancias químicas y nos indican su composición, al indicarnos los elementos que la forman y la proporción de átomos en dicha sustancia. La fórmula del agua, H_2O , nos informa de que está formada de hidrógeno y oxígeno, y además que por cada átomo de oxígeno tenemos dos átomos de hidrógeno.

Objetivo de la formulación. El objetivo de la formulación y nomenclatura química es que *a partir del nombre de un compuesto sepamos escribir su fórmula (formular), y a partir de la fórmula sepamos cual es su nombre (nombrar)*. Antiguamente esto no era tan fácil, pero gracias a las normas de la I.U.P.A.C. (Unión Internacional de Química Pura y Aplicada) la formulación resulta más sencilla.

¿Por qué se unen los átomos? Porque así consiguen más estabilidad. Cuando se estudian las configuraciones electrónicas de los átomos se ve que los *electrones* del *nivel de valencia* (la última capa) tienen una importancia especial ya que son los que participan en la formación de los enlaces y en las reacciones químicas. Los gases nobles tienen gran estabilidad porque tienen las capas electrónicas completas. Por tanto, completar las capas electrónicas será la tendencia de los átomos a la hora de unirse (enlazar) con otros átomos.

¿Cómo se consigue configuración de gas noble? Los átomos pueden conseguir configuración de gas noble de tres formas: ganando, perdiendo o compartiendo electrones con otros átomos. En los elementos de los grupos representativos (alcalinos, alcalinotérreos, grupo del B, grupo del C, grupo del N, calcógenos y halógenos) el nivel de valencia se completa con ocho electrones. Los átomos con pocos electrones de valencia (alcalinos, alcalinotérreos, etc.) tenderán a perderlos dando lugar a iones positivos (cationes) y formando en general compuestos iónicos. Los átomos con muchos electrones de valencia (halógenos, calcógenos, etc.) tenderán a ganarlos dando lugar a iones negativos (aniones), formando con los metales compuestos iónicos, pero con los no metales compuestos covalentes.

No obstante, cuando se enlazan elementos no metálicos, que es la situación más frecuente, no se produce cesión-captura de electrones sino que se comparten dando lugar a sustancias covalentes.

NORMAS PRÁCTICAS ELEMENTALES SOBRE FORMULACIÓN IUPAC 2005

- Para leer una fórmula se deletrea y nunca se silabea. Ejemplo: Se₃Fe₂: No se lee se-dos-fe-tres. La forma correcta es: ese-e-tres-efe-e-dos.
- En general, se escribe siempre en primer lugar el símbolo del elemento o grupo que tiene estado de oxidación positivo (más a la izquierda en el sistema periódico) y a continuación el que actúe con estado de oxidación negativo (más a la derecha en la tabla periódica). Al nombrarlos se hace en orden inverso. Ejemplos: NaCl: cloruro de sodio. CaCO₃: carbonato de calcio.
- Los subíndices indican la cantidad de átomos/iones o la proporción de estos que participan en un compuesto.
 Ejemplos: H₂O, en el compuesto hay dos átomos de hidrógeno por cada uno de oxígeno; Na₂O: en el compuesto hay dos iones Na⁺ por cada uno de O²⁻.
- Para nombrar un compuesto conviene deducir las respectivas estados de oxidación (tabla siguiente) con que actúan los elementos teniendo en cuenta que la carga neta del conjunto, que en el caso de los compuestos es cero, para los cationes es positiva y para los aniones negativa.
- La carga de un ión se indica en forma de superíndice con su signo (+ ó –). Nota: por convenio el signo siempre se escribe después del número y no al revés. Ejemplos: CO₃²⁻; Zn²⁺; PO₄³⁻; Cl⁻.
- A nivel práctico, para formular un compuesto binario se intercambian las valencias de los elemento (estados de oxidación prescidiendo de signos) y se colocan en forma de subíndices, debiéndose simplificar (excepto en peróxidos) al entero más bajo. El subíndice 1 siempre se omite.

Ejemplos: $Na^+Cl^- \rightarrow Na_1Cl_1 \rightarrow NaCl$; $Al^{3+}CO_3^{2-} \rightarrow Al_2(CO_3)_3$.

VALENCIA Y NÚMERO DE OXIDACIÓN.-

Cuando se aprende a formular, hay dos conceptos recurrentes que pueden llegar a confundir: <u>La valencia y el número de oxidación</u>. Cuando hablamos de la valencia, a diferencia del número de oxidación, nos referimos al número de electrones que un átomo pone en juego en una determinada combinación, y se expresa como un número natural (sin signo).

¿Qué es el número de oxidación? El número de oxidación es un número entero que representa el número de electrones que un átomo pone en juego cuando forma un compuesto determinado. A diferencia de la valencia, tiene signo porque estamos considerando los enlaces desde una perspectiva iónica. Así, un número de oxidación positivo indica que el átomo cede electrones o los comparte con un elemento más electronegativo (con más tendencia a captarlos), y negativo cuando el átomo gana electrones o los comparte con un átomo menos electronegativo.

Recuerda que los átomos se unen unos con otros para alcanzar una configuración estable (regla del **octeto**), y la tendencia a captar o ceder electrones depende de su configuración electrónica. Los metales tienen números de oxidación positivos porque tienden a ceder electrones mientras que los no metales presentan tanto números de oxidación negativos como positivos.

En los iones monoatómicos la carga eléctrica coincide con el número de oxidación. Cuando nos refiramos al número de oxidación el signo + o - lo escribiremos a la izquierda del número, como en los números enteros, pero al escribir el ión lo haremos a la derecha del dígito. P.ej: como el Ca tiene n.o: +2, el catión será Ca²⁺ (nunca Ca⁺²).

La definición de valencia de un elemento en un compuesto (más extendida) corresponde con el número de enlaces, con independencia de su naturaleza, y por lo tanto la valencia es siempre un número natural. El concepto de valencia resulta más práctico en la formulación de compuestos binarios, mientras que el número de oxidación lo es en aniones complejos y compuestos de tres o más elementos. Ejemplos aclaratorios:

Fe₂O₃: Valencias: hierro (3); oxígeno (2)

Números de oxidación: hierro: +3 (cede 3 electrones) y oxígeno: -2 (cada oxígeno gana 2 electrones).

NO: Valencias: N(2), O(2)

Números de oxidación: N (+2) y O (-2) aunque no hay cargas reales al tratarse de un compuesto covalente.

NOTA: Al final hay una tabla de los estados de oxidación más frecuentes que debes aprender.

1 SUSTANCIAS SIMPLES.

ELEMENTOS.

Llamamos así a las sustancias constituidas por átomos de un sólo elemento. Su fórmula será el símbolo del elemento (Fe, Na, Cu, C, etc), excepto las siguientes moléculas gaseosas (H_2 , N_2 , O_2 , O_3) y las de los halógenos (F_2 , Cl_2 , Br_2 , I_2) que se presentan en forma diatómica o triatómica. Según la IUPAC se nombran con los prefijos di- o tri-, aunque su nombre común omite los prefijos, sin embargo para estas sustancias, cuando sus átomos aparecen aislados, sí que llevan el prefijo mono-.

Los prefijos que designan el número de átomos son:

1	2	3	4	5	6	7	8	9	10	11	12
mono-	di-	tri-	tetra-	penta-	hexa-	hepta-	octa-	nona-	deca-	undeca-	dodeca-

Fórmula	Nom. sistemático	Nombre común	Fórmula	Nom. sistemático	Nombre común
H ₂	Dihidrógeno	Hidrógeno	F ₂	Diflúor	Flúor
N ₂	Dinitrógeno	Nitrógeno	Cl ₂	Dicloro	Cloro
O ₂	Dioxígeno	Oxígeno	Br ₂	Dibromo	Bromo
O ₃	Trioxígeno	Ozono	l ₂	Diyodo	Yodo
Н	Monohidrógeno	Hidrógeno atómico	F	Monoflúor	Flúor atómico

N	Mononitrógeno	Nitrógeno atómico	Cl	Monocloro	Cloro atómico
0	Monooxígeno	Oxígeno atómico	1	Monoyodo	Yodo atómico
P ₄	Tetrafósforo	Fósforo blanco	S ₈	Octaazufre	
S ₆	Hexaazufre		Fe	hierro	

IONES SIMPLES.

Los iones son átomos o grupos de átomos con carga eléctrica, positiva (cationes) o negativa (aniones). Aunque no son sustancias simples, pues siempre se asocian a otros iones, es útil aprender a nombrar los iones más sencillos que luego nos encontraremos en otros compuestos.

Cationes monoatómicos: El símbolo del elemento se acompaña de un superíndice con el valor de la carga seguido del signo más, Cⁿ⁺. Se utiliza la nomenclatura de Stock: Se nombran con la palabra catión y el nombre del elemento seguido del número de oxidación sin el signo entre paréntesis y en números romanos, pero se omite si el catión sólo tiene una valencia.

Aniones monoatómicos: El símbolo del elemento se acompaña de un superíndice con el valor de la carga seguido del signo menos. Aⁿ⁻⁻.

Se dice el nombre del **no metal terminado en**-**uro**, excepto para el caso del O^{2-} que se nombra como óxido. No se requiere indicar número de oxidación ya que el no metal sólo tiene un número de oxidación negativo.

Catión	Nombre de Stock
Mg ²⁺	Catión magnesio
Fe ²⁺	Catión hierro (II)
Fe ³⁺	Catión hierro (III)
Cu⁺	Catión cobre (I)
Au ³⁺	Catión oro (III)
Zn ²⁺	Catión cinc

Anión	Nombre común
H-	Ión hidruro
C ⁴⁻	Ión carburo
Si ⁴⁻	Ión siliciuro
N ³⁻	Ión nitruro
O ²⁻	Ión óxido
S ²⁻	Ión sulfuro
Se ²⁻	Ión seleniuro
I -	Ión yoduro

lones homopoliatómicos: para estos casos se utiliza el **sistema de Ewens-Bassett** que consiste en indicar el número de átomos con un prefijo (con terminación uro para los aniones) y la carga, entre paréntesis, señalando número y signo. Este sistema también puede utilizarse para iones monoatómicos aunque no es muy común (Au³⁺: catión oro (3+))

Catión	Nombre de Ewens-Bassett
H ₃ ⁺	Ion trihidrógeno(1+)
S ₄ ²⁺	Ion tetraazufre(2+)
Hg ₂ ²⁺	Ion dimercurio(2+)
S ₂ ²⁻	Ión disulfuro(2–)
N ₃ -	Ión trinitruro(1–)

Ejercicios.

1. Nombra o formula las siguientes especies:

Fórmula	Nombre sistemático	Nombre común
O ₃		
F ₂		
O ₂		
H ₂		
Au		
Br ₂		
Р		

2. Formula las siguientes especies:

Nombre	Fórmula	Nombre	Fórmula	Nombre	Fórmula	Nombre	Fórmula
Selenio		Ozono		Dinitrógeno		Oxígeno	
Hidrógeno		Cobalto		Flúor		Yodo	
Dicloro		Boro		Vanadio		Dibromo	

Germanio	diazufre	Titanio	Tetrafósforo	

3. Nombra las siguientes especies utilizando la nomenclatura adecuada:

Fórmula	Stock/común/Ewens-Ba	Fórmula	Stock/común/Ewens-Basset
Ti ⁴⁺		P ³⁻	
Co ²⁺		As ³⁻	
V ⁵⁺		CI ⁻	
Cs⁺		Br ⁻	
TI ³⁻		Te ²⁻	

2 COMPUESTOS BINARIOS

2.1. COMBINACIONES BINARIAS DEL OXÍGENO

El oxígeno se combina con todos los elementos químicos, excepto con los gases nobles. El oxígeno actúa con estado de oxidación -2: (O^{2-} : óxido) y al ser **casi siempre** el más electronegativo se coloca en segundo lugar en la fórmula, excepto cuando se combina con los halógenos que se escribe delante.

Se formulan estos compuestos escribiendo el símbolo del elemento y después el del oxígeno e intercambiando los estados de oxidación: $\mathbf{E_2O_n}$, fórmula en la que E es cualquier elemento excepto los halógenos. Si la valencia \mathbf{n} es par, ambos subíndices se simplifican.

2.1.1. Oxígeno con metales y no metales (no halógenos)

Para estos compuestos se utilizan las nomenclaturas acordes con las recomendaciones IUPAC de 2005:

- Nomenclatura de composición con prefijos: utiliza la palabra genérica óxido precedida un prefijo (mono, di, tri, tetra, penta, hexa, hepta, etc., indicando el número de oxígenos y del mismo modo, a continuación, la proporción del segundo elemento. Ejemplo: pentaóxido de dinitrógeno: N₂O₅; dióxido de titanio: TiO₂.
- Nomenclatura de composición con el estado de oxidación en números romanos: se utiliza la palabra genérica <u>óxido</u> seguida del <u>nombre del otro elemento</u> indicando la valencia (número de oxidación) con números romanos entre paréntesis. Si el elemento sólo tiene una valencia, no se indica. Ejemplos: óxido de hierro(III): Fe₂O₃; óxido de aluminio Al₂O₃.

Ejemplos:

Fórmula	Nomenclatura de prefijos	Nomenclatura Romanos
BaO	Monóxido de bario / óxido de bario	Óxido de bario
Na ₂ O	Óxido de disodio	Óxido de sodio
CuO	Monóxido de cobre / óxido de cobre	Óxido de cobre (II)
Cu ₂ O	Monóxido de dicobre	Óxido de cobre (I)
SeO ₃	Trióxido de azufre	Óxido de azufre (VI)
As ₂ O ₅	Pentaóxido de diarsénico	Óxido de arsénico (V)

2.1.2. Oxígeno con halógenos (Haluros de oxígeno)

Por convenio de la Nomenclatura IUPAC 2005, los halógenos son considerados más electronegativos que el oxígeno, no se pueden nombrar ni se consideran óxidos sino haluros de oxígeno:

Nomenclatura de composición con prefijos multiplicadores: es la única nomenclatura que se aplica a
 estos compuestos. Se nombran haciendo terminar en <u>-uro</u> el nombre del halógeno, precedida de prefijo
 numeral di, y se indica el número de oxígenos mediante prefijo. Ejemplo: dibromuro de pentaoxígeno:
 O₅Br₂; difluoruro de oxígeno: OF₂. Otros ejemplos:

Fórmula	Nomenclatura de prefijos			
OCI ₂	Dicloruro de oxígeno			
O ₃ Br ₂	Dibromuro de trioxígeno			

O ₅ Cl ₂	Dicloruro de pentaoxígeno
O ₇ I ₂	Diyoduro de heptaoxígeno

2.1.3. Peróxidos.

Son combinaciones binarias de un metal o hidrógeno con el grupo peróxido: O_2^{2-} . Se formulan igual que los óxidos: $M_2(O_2)_n$. Podemos simplificar las valencias pero nunca el subíndice 2 del peróxido, o dicho de otra forma, podemos simplificar siempre que el número de oxígenos quede par.

- Nomenclatura de composición con prefijos: igual que los óxidos. Ejemplo: dióxido de dilitio: Li₂O₂; dióxido de dimercurio: Hg₂O₂.
- Nomenclatura de composición con números romanos: En estos compuestos, se antepone el prefijo peral nombre del óxido y se indica la valencia del otro elemento en caso de que tenga varias. Ejemplo: peróxido de litio: Li₂O₂; peróxido Níquel (II): NiO₂.

IMPORTANTE: Recuerda que al formular no se puede simplificar el subíndice correspondiente al grupo: O_2^{2-} . Ejemplo: peróxido de calcio: $Ca^{2+} O_2^{2-} \rightarrow Ca_2(O_2)_2 \rightarrow CaO_2$.

Ejercicios.

4. Nombra los compuestos siguientes con las dos nomenclaturas:

Fórmula	Nomenclatura de Prefijos	Nomenclatura Romanos
BeO		
Au ₂ O ₃		
ZnO		
Cr ₂ O ₃		
N ₂ O ₃		
P ₂ O ₃		
SO ₂		
OBr ₂		
P ₂ O ₅		
СО		
K ₂ O ₂		
Al ₂ (O ₂) ₃		
H ₂ O ₂		
MgO ₂		

5. Formula los siguientes compuestos y nómbralos con la otra nomenclatura:

Nomenclatura Romanos	Fórmula	Nomenclatura prefijos
Óxido de cromo(III)		
Óxido de plata		
Óxido de hierro(II)		
		Monóxido de níquel
Óxido de estaño(II)		

6. Formula los siguientes compuestos y nómbralos con la otra nomenclatura:

Nomenclatura Romanos	Fórmula	Nomenclatura de prefijos
Óxido de nitrógeno (V)		
		Dibromuro de heptaoxígeno
		Monóxido de nitrógeno
Óxido de azufre(IV)		
		Dicloruro de oxígeno
Peróxido de bario		
Óxido de selenio(VI)		

2.2. COMBINACIONES BINARIAS DEL HIDRÓGENO

El hidrógeno actúa con número de oxidación 1 o –1, dependiendo del elemento con que el se combine, en cualquier caso su valencia es 1 (es decir realiza un enlace).

2.2.1. HIDRUROS METÁLICOS: HIDRÓGENO + METALES

En estos compuestos el hidrógeno actúa con estado de oxidación –1. En cualquier caso, como la valencia del H es 1, la fórmula será del tipo: **MH**_{...} (por lo que ya quedan simplificados).

- **Nomenclatura de prefijos:** Se nombra con la palabra genérica **hidruro** seguida del nombre del metal correspondiente indicando con prefijos multiplicadores (mono, di, tri, tetra) el número de hidrógenos.
- Nomenclatura de números romanos: se indica la valencia (estado de oxidación) del metal con números romanos.

Fórmula	Nomenclatura prefijos	Nomenclatura romanos
CaH ₂	Dihidruro de calcio	Hidruro de calcio
SnH ₂	Dihidruro de estaño	Hidruro de estaño(II)
CuH	Monohidruro de cobre / hidruro de cobre	Hidruro de cobre (I)
CuH ₂	Dihidruro de cobre	Hidruro de cobre (II)
ScH ₃	Trihidruro de escandio	Hidruro de escandio

2.2.2. HIDRÓGENO + NO METALES

El hidrógeno actúa con estado de oxidación +1, y el no metal con su estado de oxidación negativo. No obstante, dependiendo del grupo de elementos se diferencian dos tipos:

A. <u>Con los grupos 16 y 17 de la tabla periódico</u>. El hidrógeno actúa en estos compuestos con estado de oxidación +1, y los no metales con su respectivo estado de oxidación negativo, siendo por tanto los elementos más electronegativos.

Nomenclatura de prefijos: se nombran añadiendo el sufijo -uro al no metal, seguido de la palabra hidrógeno.
 (Recuerda que la terminación -uro hace mención al estado de oxidación negativo del elemento). Utilizamos esta nomenclatura cuando el compuesto está en estado puro.

IMPORTANTE: no se debe indicar el número de hidrógenos con prefijos numerales. Ejemplos:

Fórmula	Nomenclatura sistemática		
HF	Fluoruro de hidrógeno		
HCl	Cloruro de hidrógeno		
H ₂ S	Sulfuro de hidrógeno		
HCN *	Cianuro de hidrógeno		

^{*} El cianuro de hidrógeno, HCN, aunque es ternario, pertenece a este tipo de compuestos y está formado por el ión cianuro, CN-, combinado con el ión H⁺.

• Cuando estos compuestos (que son gaseosos) están **disueltos en agua**, generan disoluciones ácidas, por lo que en este caso reciben el nombre de **ÁCIDOS HIDRÁCIDOS**. Así, de manera tradicional se nombran utilizando la palabra genérica **ácido** y se añade el sufijo **-hídrico** a la raíz del no metal. Ejemplos:

Fórmula	Nomenclatura tradicional
H ₂ S (aq)	Ácido sulfhídrico
HCl (aq)	Ácido clorhídrico
HI (aq)	Ácido yodhídrico
H _a Te (aq)	Ácido telurhídrico

- **B.** <u>Grupos 13, 14 y 15</u>. Son compuestos formados por combinación del hidrógeno con los elementos B, C, Si, N, P, As, Sb.
 - Nomenclatura de prefijos: Se indica con un prefijo el número de hidrógenos (prefijo-hidruro) seguida del nombre del elemento en cuestión. Se utilizan prefijos numerales para indicar el número de hidrógenos presentes en el compuesto. Ejemplos: NH₃: trihidruro de nitrógeno; PH₃: trihidruro de fósforo; AsH₃: trihidruro de arsénico; BH₃: trihidruro de boro; SiH₄: tetrahidruro de silicio
 - **Nomenclatura sistemática de sustitución:** esta forma de nombrar está basada en los llamados "hidruros padres o progenitores". Estos nombres están recogidos en la siguiente tabla:

Gr	upo 13	G	rupo 14	Grupo 15		Grupo 15 Grupo 16		Grupo 17	
BH ₃	Borano	CH ₄	METANO	NH ₃	Azano	H ₂ O	Oxidano	HF	Fluorano
AlH ₃	Alumano	SiH ₄	Silano	PH ₃	Fosfano	H ₂ S	Sulfano	HCl	Clorano
GaH₃	Galano	GeH₄	Germano	AsH ₃	Arsano	H ₂ Se	Delano	HBr	Bromano
InH ₃	Indigano	SnH₄	Estannano	SbH ₃	Estibano	H ₂ Te	Telano	HI	Yodano
TIH ₃	Talano	PbH ₄	Plumbano	BiH ₃	Bismutano	H ₂ Po	Polano	HAt	Astatano

[✓] Además, se aceptan los nombres comunes de **amoniaco** para el NH₃ y **agua** para el H₂O.

Ejercicios.

7. Formula los siguientes compuestos y nómbralos con la otra nomenclatura:

Fórmula	Nomenclatura de prefijos	Nomenclatura II
ZrH ₄		
SiH ₄		
NH ₃		
	Trihidruro de antimonio	
H ₂ S		
		Ácido bromhídrico
	trihidruro de cromo	
B ₂ H ₆		
		Metano
	Bromuro de hidrógeno	
	Telururo de hidrógeno	
	Dihidruro de bario	
		Hidruro de aluminio
		Hidruro de estaño (IV)
CuH		
AuH ₃		
CoH ₃		
CoH ₂		

2.3. OTRAS COMBINACIONES BINARIAS: SALES.

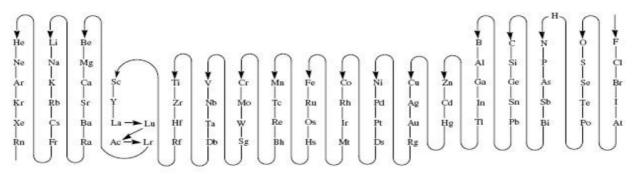
2.3.1. Sales iónicas: Metal y no metal.

Son combinaciones de un metal (estado de oxidación positivo) con un no metal (estado de oxidación negativo). Se formulan escribiendo el símbolo del metal y después el del no metal e intercambiando los estados de oxidación (valencias): M₂X_b. Se simplifica si es posible.

Pueden utilizarse tres nomenclaturas distintas, pero nosotros usaremos dos:

• **Nomenclatura de prefijos multiplicadores:** se nombra primero el no metal con el sufijo -**uro** y se utilizan prefijos multiplicadores para indicar la proporción de cada elemento.

[✓] Sólo debes memorizar aquellos nombres que aparecen en negrita.


• Nomenclatura expresando el número de oxidación con números romanos: se nombra antes el no metal con el sufijo -uro y se indica el estado de oxidación del metal mediante números romanos.

Fórmula	Nomenclatura de composición con prefijos multiplicadores	Nomenclatura de composición expresando el número de oxidación con números romanos
CaF ₂	Difluoruro de calcio	Fluoruro de calcio
AICI ₃	Tricloruro de aluminio	Cloruro de aluminio
CuBr ₂	Dibromuro de cobre	Bromuro de cobre(II)
Cu ₂ S	Sulfuro de dicobre	Sulfuro de cobre(I)

2.3.2. Sales covalentes: no metal + no metal.

La IUPAC establece que en las combinaciones binarias entre no metales, al igual que en los demás compuestos binarios, se escribirá primero en la fórmula el elemento menos electronegativo (que usará el estado de oxidación positivo) seguido del más electronegativo (que utiliza su estado de oxidación negativo).

Así, se escribirá en primer lugar en la fórmula el elemento que aparezca más a la izquierda en la siguiente secuencia que comienza en el flúor (elemento más electronegativo de la tabla periódica). Observa con atención la posición de hidrógeno, que no corresponde con su posición en el sistema periódico:

Estos compuestos se nombran con las dos nomenclaturas ya vistas anteriormente (con prefijos y con números romanos), y recuerda que siempre termina en **-uro e**l elemento cuyo símbolo este colocado a la derecha en la fórmula, y que ese elemento utilizará su valencia negativa exclusivamente, mientras que el otro elemento puede actuar con sus valencias positivas.

Fórmula	Nomenclatura prefijos	Nomenclatura romanos
BrF	(mono)Fluoruro de bromo	Fluoruro de bromo(I)
IBr ₃	Tribromuro de yodo	Bromuro de yodo(III)
BrF ₃	Trifloruro de bromo	Fluoruro de bromo(III)
BrCl	(Mono)cloruro de bromo	Cloruro de bromo (I)
Sel ₂	Diyoduro de selenio	Yoduro de selenio(II)
CCI ₄	Tetracloruro de carbono	Cloruro de carbono (IV)

Ejercicios.

8. Nombra los compuestos siguientes con las dos primeras nomenclaturas:

Fórmula	Nomenclatura de prefijos	Nomenclatura de romanos
FeCl ₂		
MnS		
Cu ₂ Te		
AIF ₃		
NiS		
ZnCl ₂		
KI		
Mgl ₂		

Fórmula	Nomenclatura de prefijos	Nomenclatura de romanos
B ₂ S ₃		
CS ₂		
IF ₇		
PCl ₅		

9. Formula los siguientes compuestos y nómbralos con la otra nomenclatura:

Nomenclatura I	Fórmula	Nomenclatura II
Sulfuro de vanadio(V)		
Sulfuro de cromo(III)		
Tetrafluoruro de silicio		
Cloruro de hierro(II)		
Bromuro de sodio		
Yoduro de plomo(IV)		
Seleniuro de calcio		
Cloruro de estaño(IV)		
Tetracloruro de platino		
Hexafluoruro de azufre		
Tricloruro de nitrógeno		
Fluoruro de bromo(V)		
Bromuro de yodo(III)		
Fluoruro de azufre(VI)		

10. Nombra y formula los siguientes compuestos.

Fórmula	Nomenclatura I y II	Nombre	Fórmula
NaF		Cloruro de litio	
Y ₂ S ₃		Diyoduro de magnesio	
CoCl ₃		Bromuro de berilio	
CuSe		Sulfuro de dipotasio	
AgCl		Fluoruro de hierro(II)	
CdF ₂		Tetracloruro de plomo	
MnF ₂		Sulfuro de oro(III)	
CsCl		Triyoduro de aluminio	
Ni ₂ S ₃		Sulfuro de staño(II)	
PbCl ₂		Dibromuro de cinc	

3.1. HIDRÓXIDOS.

Se caracterizan por tener el grupo OH^- , llamado hidróxido (esstado de oxidación -1), unido a un metal (o al catión NH_A^+).

Se formulan escribiendo el símbolo del metal seguido del grupo hidróxido que se escribe entre paréntesis si la valencia del metal es mayor que 1. **M(OH)**_u.

Análogamente a óxidos e hidruros, se pueden nombrar utilizando nomenclaturas de **prefijos multiplicadores o indicando el número de oxidación con números romanos**, como a continuación:

Fórmula	Nomenclatura de composición con prefijos multiplicadores	Nomenclatura de composición expresando el número de oxidación con números romanos
NaOH	Hidróxido de sodio	Hidróxido de sodio
Fe(OH) ₂	Dihidróxido de hierro	Hidróxido de hierro (II)
Al(OH) ₃	Trihidróxido de aluminio	Hidróxido de aluminio
Hg(OH) ₂	Dihidróxido de mercurio	Hidróxido de mercurio (II)
Ca(OH) ₂	Dihidróxido de calcio	Hidróxido de calcio
NH ₄ OH	Hidróxido de amonio	Hidróxido de amonio

Ejercicios.

11. Formula o nombra los siguientes compuestos con y nómbralos con la otra nomenclatura:

Fórmula	Nomenclatura I	Nomenclatura II
CsOH		
KOH		
Be(OH) ₂		
Fe(OH) ₃		
AgOH		
AI(OH) ₃		
NH ₄ OH		
Cd(OH) ₂ Au(OH) ₃ Mn(OH) ₃		
Au(OH) ₃		
Mn(OH) ₃		
Bi(OH) ₃		
Pt(OH) ₂ V(OH) ₅		
V(OH) ₅		

12. Formula o nombra los siguientes compuestos con y nómbralos con la otra nomenclatura:

Nombre	Fórmula	Nombre	Fórmula
Dihidróxido de níquel		Tetrahidróxido de titanio	
Hidróxido de litio		Hidróxido de estaño (II)	
Hidróxido de sodio		Dihidróxido de bario	
Hidróxido de calcio		Hidróxido de níquel(III)	
Hidróxido de mercurio(II)		Hidróxido de cromo(II)	
Dihidróxido de hierro		Hidróxido de actinio(III)	
Dihidróxido de cobre		Hidróxido de aluminio	
Hidróxido de plomo (IV)		Hidróxido de titanio (IV)	

3.2.- ÁCIDOS OXÁCIDOS U OXOÁCIDOS.

Son compuestos ternarios que contienen átomos de un <u>elemento característico</u>, <u>oxígeno e hidrógeno</u>. Aunque el elemento característico (X) es generalmente un no-metal, también puede ser un metal de transición con valencia alta (V, Cr, Mn...). Su fórmula general es $\mathbf{H}_{\mathbf{m}}\mathbf{X}_{\mathbf{n}}\mathbf{O}_{\mathbf{n}}$.

Para formularlos procedemos del siguiente modo:

- Se escribe el símbolo del elemento característico con el estado de oxidación que indica su nombre y se añaden oxígenos hasta que quede una especie cargada negativamente.
- Se completa la fórmula añadiendo hidrógenos hasta que la especie quede neutra.

La IUPAC admite la **NOMENCLATURA TRADICIONAL** de estos compuestos escribiendo la palabra **ácido** y el nombre del elemento terminado en ico u oso, según el número de oxidación, y anteponiéndole (si es necesario) el prefijo indicado en la misma tabla.

(*) Números de oxidación para formar oxoácidos				
Prefijos y sufijos	Hipooso	oso	ico	Perico
Halógenos (Cl, Br, I)	I	Ш	V	VII
Anfígenos	II	IV	VI	
Nitrogenoideos (N, P, As, Sb)		Ш	V	
Carbonoideos		II*	IV	
Boro			III	
Mn**		IV	VI	VII
Cr, Mo, W		·	VI	
V			V	

^{*} En algún ejercicio ha aparecido el carbono con número de oxidación II (CO), pero no lo presenta en este tipo de compuestos y derivados.

^{**} Observa que el manganeso tiene 3 valencias, pero no se sigue la regla general. Fíjate como, en cualquier caso, <u>el número de oxidación VII siempre corresponde a per…ico</u>.

Ácido	1º paso (pensamos el n.o.)	2º paso (escribimos oxoanión)	3º paso
Ácido hipocloroso	Cl (n.o: +1)	CIO-	HCIO
Ácido perbrómico	Br (n.o: +7)	BrO ₄	HBrO₄
Ácido sulfúrico	S (n.o:+6)	SO ₄ ²⁻	H ₂ SO ₄
Ácido permangánico	Mn (n.o: +7)	MnO ₄	HMnO ₄
Ácido selenioso	Se (n.o: +4)	SeO ₃ ²⁻	H ₂ SeO ₃

Para nombrarlos necesitamos conocer el número de oxidación elemento central, que determinará la terminación correspondiente. Para ello podemos operar como sigue:

n ox (elemento X)= 2*nº de oxígneos – nº de hidrógenos

La **NOMENCLATURA DE HIDRÓGENO** se basa en nombrar con un prefijo: di-, tri-, tetra-, etc. los hidrógenos del ácido (se usa la palabra "hidrogeno" **sin tilde** pero enfatizada en la sílaba "dro") seguido del nombre de adición del anión terminado en "-ato" entre paréntesis y unido, sin espacios, a la palabra "hidrogeno"¹.

Prefijo-hidrogeno(prefijo-oxido-ELEMENTO CENTRAL-ato)

Ejemplos.

Fórmula	Nom. tradicional	Nomenc. de hidrógeno
HCIO	Ácido hipocloroso	hidrogeno(oxidoclorato)
HClO ₂	Ácido cloroso	hidrogeno(dioxidoclorato)
HCIO ₃	Ácido clórico	hidrogeno(trioxidoclorato)
HClO ₄	Ácido perclórico	hidrogeno(tetraoxidoclorato)

¹Observa cómo hemos roto la tendencia de nombrar de derecha a izquierda al empezar diciendo el número de hidrógenos

3.2.1.- OXOÁCIDOS COMPLEJOS.

Nomenclatura sistemática de hidrógeno: (Igual que la explicada anteriormente).

Nomenclatura tradicional: se utilizan los prefijos **orto** y **meta.** Estos ácidos pueden formularse con el mismo mecanismo que describimos antes, pero el prefijo orto-... indica que hemos de añadir un oxígeno más de los necesarios para exceder el número de oxidación del elemento central (X). Si se utiliza el prefijo **meta-** se seguirían los mismos pasos que en los oxoácidos "normales".

No todos los elementos originan oxoácidos orto, los más frecuentes son los formados con los elementos **B, Si, P, As, Sb** y en estos casos cuando se elude el prefijo orto a cambio de nombrar obligatoriamente el prefijo meta.

Ácido	1º paso (formulamos el oxoanión)	2º paso (añadimos H†)	Nombre correcto
Ácido ortofósforico	PO ₄ 3-	H ₃ PO ₄	Ácido fosfórico
Ácido ortoantimonioso	SbO ₃ ³⁻	H ₃ SbO ₃	Ácido antimonioso
Ácido metasilícico	SiO ₃ ²⁻	H ₂ SiO ₃	Ácido metasilícico
Ácido ortosilícico	SiO ₄ ⁴⁻	H ₄ SiO ₄	Ácido silícico
Ácido ortobórico	BO ₃ ³⁻	H ₃ BO ₃	Ácido bórico

3.2.2.- ISOPOLIÁCIDOS.

Son oxoácidos en cuya molécula existe más de un átomo del elemento central. Se nombran de forma tradicional indicando con un prefijo numeral el número átomos del elemento central. Para formularlos, por tanto, se procede igual que con los oxoácidos simples, pero partiendo de tantos átomos de elemento característico como diga el numeral.

En las nomenclaturas IUPAC se nombran como todos los vistos. Ejemplos:

Ácido	1º paso	2º paso
Ácido disulfúrico	S ₂ O ₇ ²⁻	H ₂ S ₂ O ₇
Ácido dicrómico	Cr ₂ O ₇ ²⁻	H ₂ Cr ₂ O ₇
Ácido tetrasulfuroso	S ₄ O ₉ ²⁻	H ₂ S ₄ O ₉
Ácido triselenioso	Se ₃ O ₇ ²⁻	H ₂ Se ₃ O ₇

Ejemplos de las dos nomenclaturas vistas son:

Fórmula	Nomenclatura de hidrógeno	Nomenclatura tradicional
H ₂ SO ₃	dihidrogeno(trioxidosulfato)	Ácido sulfuroso
H ₂ SO ₄	dihidrogeno(tetraoxidosulfato)	Ácido sulfúrico
HNO ₂	hidrogeno(dioxidonitrato)	Ácido nitroso
HNO ₃	hidrogeno(trioxidonitrato)	Ácido nítrico
H ₃ PO ₃	trihidrogeno(trioxidofosfato)	Ácido fosforoso
H ₃ PO ₄	trihidrogeno(tetraoxidofosfato)	Ácido fosfórico
H ₂ CO ₃	dihidrogeno(trioxidocarbonato)	Ácido carbónico
H ₄ SiO ₄	tetrahidrogeno(tetraoxidosilicato)	Ácido silícico
H ₂ CrO ₄	dihidrogeno(tetraoxidocromato)	Ácido crómico
H ₂ Cr ₂ O ₇	dihidrogeno(heptaoxidodicromato)	Ácido dicrómico
H ₂ MnO ₄	dihidrogeno(tetraoxidomanganato)	Ácido mangánico
HMnO ₄	hidrogeno(tetraoxidomanganato)	Ácido permangánico

Ejercicios.

13. Nombra los siguientes ácidos con las nomenclaturas indicadas:

Fórmula	Nomenclatura de hidrógeno	Nomenclatura tradicional
HCIO		
HClO ₂		
HClO ₃		
HIO ₄		
HMnO ₄		
H ₂ SeO ₃		
H ₃ PO ₄		
H ₂ Cr ₂ O ₇		
H ₂ SO ₃		
H ₄ SiO ₄		
H ₂ CrO ₄		
HNO ₂		
HBrO ₃		
H ₂ TeO ₃		
H ₃ AsO ₃		
H ₂ MnO ₄		
HBrO ₂		
H ₃ PO ₃		
HNO ₃		
H ₂ CO ₃		
H ₂ SO ₄		
H ₂ CO ₃		
HIO ₄		
HMnO ₄		
H ₂ SeO ₃		
H ₃ PO ₄		
H ₂ Cr ₂ O ₇		
H ₂ SO ₄		

14. Formula los siguientes ácidos:

Nombre	Fórmula	Nombre	Fórmula
Ácido clórico		Ácido nitroso	
Ácido sulfúrico		Ácido sulfuroso	
Ácido fosfórico		Ácido hipoyodoso	
Ácido carbónico		Dihidrogeno(tetraóxidoseleniato)	
Ácido peryódico		Ácido perclórico	
Ácido ortosilícico		Hidrogeno(dióxidoyodato)	
Ácido hipobromoso		Ácido permangánico	
Ácido ortoarsenioso		Ácido mangánico	
Hidrogeno(dioxidonitrato)		Dihidrogeno(heptaoxidodisulfato	
Ácido crómico		Trihidrogeno(tetraoxidofosfato)	
Ácido cloroso		Ácido metafosfórico	
Ácido dicrómico		Trihidrogeno(tetraoxidoantimonato)	
Ácido telúrico		Dihidrogeno(trioxidocarbonato)	
Ácido nitroso		Dihidrogeno(tetraoxidowolframato)	
Ácido metafosfórico		Hidrogeno(trioxidobromato)	

3.3.- ANIONES POLIATÓMICOS (oxoaniones).

En ellos se combinan un elemento característico (mismos que forman los oxoácidos), en sus estados de oxidación positivos, con el oxígeno. A diferencia de los compuestos, al tratarse de aniones la carga total resulta negativa, por lo que al formularlos se procede igual que con los oxoácidos, añadiendo los oxígenos necesarios pero sin añadir hidrógenos para que quede neutro.

La IUPAC admite la **NOMENCLATURA TRADICIONAL** de estos compuestos. El nombre del anión se consigue haciendo terminar el <u>nombre del elemento</u> en los sufijos <u>-ito o -ato</u>, en lugar del -oso y el -ico utilizados en los ácidos. Ejemplos:

lón	Nomenclatura tradicional
SO ₄ ²⁻	Ión sulfato
Cr ₂ O ₇ ²⁻	Ión dicromato
CIO-	Ión hipoclorito
BrO ₂ -	Ión bromito
WO ₄ ²⁻	Ión wolframato

La IUPAC recomienda otras nomenclaturas: la de adición y la estequiométrica. Nosotros veremos la segunda.

NOMENCLATURA ESTEQUIOMÉTRICA de aniones: se basa en nombrar con un prefijo: dióxido-, trióxido-, tetraóxido-, antecediendo al nombre del <u>elemento que se hace terminar en</u> "-ato", y entre paréntesis la carga del anión (según el sistema de Ewens-Bassett). Si hubiese dos o más átomos del elemento representativo, se hace constar mediante prefijo.

Anión	Nom. estequiométrica	Nom. tradicional
CO ₃ ²⁻	Trioxidocarbonato (2-)	Ión carbonato
NO ₂ -	Dioxidonitrato (1-)	Ión nitrito
PO ₃ ³⁻	Trioxidofosfato (3-)	Ión fosfito
1O ₄ -	Tetraoxidoyodato (1-)	Ión peryodato
CrO ₄ ²⁻	Tetraoxidocromato (2-)	Ión cromato
S ₂ O ₇ ²⁻	Heptaoxidodisulfato (2-)	Ión disulfato
MnO ₄ ²⁻	Tetraoxidomanganato (2-)	Ión manganato
MnO ₄	Tetraoxidomanganato (1-)	Ión permanganato

15. Completa la siguiente tabla de aniones:

Nombre estequiométrica	Fórmula	Nom. tradicional
Trioxidoclorato (1–)		
Heptaoxisodisulfato (2–)		
Trioxidofosfato (3–)		
Trioxidoseleniato (2–)		
Dioxidonitrato (1–)		
Dioxidofofato (1–)		
Tetraoxidoantimoniato (3–)		
Trióxidosulfato (2–)		
	CIO ₂ -	
	CIO ₄	
	SeO ₄ ²⁻	
	BO ₂ -	
	CrO ₄ ²⁻	
	IO ₂ -	
	TeO ₃ ²⁻	
	MnO ₄	
	Cr ₂ O ₇ ²⁻	

3.4.- OXOSALES.

Son compuestos ternarios, que pueden formularse como la combinación de un oxoanión y un metal $\mathbf{M}^{\mathsf{x}^{\mathsf{+}}}$, como se indica en su fórmula general: $\mathbf{M}_{m}(\mathbf{X}_{n}\mathbf{O}_{n})_{\mathbf{x}}$

El catión metálico (con el número de oxidación correspondiente) se combina con el oxoanión, cruzándose valencias y simplificaremos, si es posible. Para nombrarlos:

<u>Nomenclatura tradicional</u>: Se acepta esta nomenclatura escribiendo el nombre del anión en primer lugar con
el prefijo o sufijo que le corresponda según su estado de oxidación y después se nombra el catión indicando
entre paréntesis con números romanos su estado de oxidación si es necesario.
 Ejemplos:

Nombre tradicional	Oxoácido	Anión	Catión	Oxisal
Sulfato de calcio	H ₂ SO ₄	SO ₄ ²⁻	Ca ²⁺	$Ca_2(SO_4)_2 \rightarrow CaSO_4$
Nitrito de plata	HNO ₂	NO ₂ -	Cu ²⁺	Cu(NO ₂) ₂
Dicromato de hierro(III)	H ₂ Cr ₂ O ₇	Cr ₂ O ₇ ²⁻	Fe³+	Fe ₂ (Cr ₂ O ₇) ₃

• Nomenclatura estequiométrica de sales: Se escribe el nombre del anión sin la carga, si es necesario con los prefijos bis, tris, tetrakis, pentakis, hexakis, etc. que nos indican la repetición del anión poliatómico (subíndices bajo el paréntesis), seguido del catión, con los prefijos di, tri, tetra, etc que nos indican la repetición del catión.

Sal	Nomenclatura tradicional	Nomenclatura estequiométrica
Na ₂ CO ₃	Carbonato de sodio	Trioxidocarbonato de disodio
KNO ₂	Nitrito de potasio	Dioxidonitrato de potasio
Ca(NO ₃) ₂	Nitrato de calcio	Bis(trioxidonitrato) de calcio
AIPO ₄	Fosfato de aluminio	Tetraoxidofosfato de aluminio
Na ₂ SO ₃	Sulfito de sodio	Trioxidosulfato de disodio
Fe ₂ (SO ₄) ₃	Sulfato de hierro (III)	Tris(tetraoxidosulfato) de dihierro
NaClO	Hipoclorito de sodio	Oxidoclorato de sodio
Ca(ClO ₂) ₂	Clorito de calcio	Bis(dioxidoclorato) de calcio
Ba(IO ₃) ₂	Yodato de bario	Bis(trioxidoyodato) de bario
KIO ₄	Peryodato de potasio	Tetraoxidoyodato de potasio
CuCrO ₄	Cromato de cobre (II)	Tetraoxidocromato de cobre
K ₂ Cr ₂ O ₇	Dicromato de potasio	Heptaoxidodicromato de dipotasio
Na ₂ MnO ₄	Manganato de sodio	Tetraoxidomanganato de disodio
Ba(MnO ₄) ₂	Permanganato de bario	Bis(tetraoxidomanganato) de bario

Ejercicios.

16. Nombra las siguientes sales con las nomenclaturas indicadas:

Fórmula	Nomenclatura tradicional	Nomenclatura estequiométrica
NH ₄ NO ₃		
K ₂ Cr ₂ O ₇		
Ba(ClO ₄) ₂		
Fe ₂ (SO ₄) ₃		
Ni ₃ (PO ₄) ₂		
NaNO ₂		

PbSeO ₄	
CuCO ₃	
Li ₄ SiO ₄	
CaTeO ₃	
FeSO ₃	
Cr ₂ (SO ₃) ₃	
AI(CIO ₃) ₃	
HgCrO ₄	
AgNO ₃	
KNO ₃	
CuSO ₄	
KMnO ₄	
NaClO	
CaCO ₃	
NH ₄ NO ₃	
K ₂ Cr ₂ O ₇	
Hg(CrO ₄) ₂	
Fe ₂ (SO ₄) ₃	
Ni ₃ (PO ₄) ₂	
NaNO ₂	
PbSeO ₄	
CuCO ₃	
Li ₄ SiO ₄	

17. Formula las siguientes sales:

Nombre	Fórmula	Nombre	Fórmula
Nitrato de aluminio		Tris(trioxidonitrato) de aluminio	
Carbonato de cadmio		Trioxidocarbonato de cadmio	
Sulfato de potasio		Tetraoxidosulfato de dipotasio	
Fosfato de calcio		Bis(tetraoxidofosfato) de tricalcio	
Sulfito de plomo(II)		Trioxidosulfato de plomo	
Nitrato de hierro(II)		Bis(trioxidonitrato) de hierro	
Nitrito de amonio		Dioxidonitrato de amonio	
Permanganato de potasio		Tetraoxidomanganato de potasio	
Silicato de calcio		Tetraoxidosilicato de dicalcio	
Sulfato de hierro(III)		Tris(tetraoxidosulfato) de dihierro	
Hipoclorito de bario		Tetraoxidomanganato de calcio	
Dicromato de plomo(II)		Tris(trioxidonitrato) de aluminio	
Cromato de cobre(II)		Peryodato de sodio	
Seleniato de cadmio		Sulfato de manganeso(III)	
Arseniato de cinc		Fosfato de cobalto(II)	
Bromato de calcio		Telurito de cobre(II)	

Ejercicios de repaso.

1. Formula las siguientes sustancias.

	Nombre	Fórmula		Nombre	Fórmula
1	Sulfuro de manganeso(II)		42	Hidruro de potasio	
2	Calcio		43	Tetrafósforo	
3	Silano		44	Ozono	
4	Óxido de hierro(III)		45	Arsano	
5	Nitrógeno		46	Diyoduro de pentaoxígeno	
6	Cloruro de plomo(IV)		47	Tetraóxido de dinitrógeno	
7	Dicloruro de heptaoxígeno		48	Metano	
8	Peróxido de bario		49	Sulfuro de zinc	
9	Sulfato de zinc		50	Dióxido de dihidrógeno	
10	Tetranitruro de trisilicio		51	Ácido fluorhídrico	
11	Dióxido de carbono		52	Disulfuro de carbono	
12	Ácido clórico		53	Bromuro de plata	
13	Anión sulfuro		54	Peróxido de cinc	
14	Óxido de plomo(IV)		55	Tetraóxidoseleniato de plomo	
15	Anión sulfito		56	Fosfato de potasio	
16	Óxido de cobalto(III)		57	Hidróxido de aluminio	
17	Ácido yodhídrico		58	Ácido arsenioso	
18	Dióxido de nitrógeno		59	Ácido metasilícico	
19	Trihidrogeno(tetraóxidofosfato)		60	Silicato de zinc	
20	Peróxido de cobre(I)		61	Carbonato de calcio	
21	Amoníaco		62	Sulfato de sodio	
22	Yoduro de cromo(III)		63	Sulfito de níquel (III)	
23	Ácido mangánico		64	Sulfuro de aluminio	
24	Ácido dicrómico		65	Ácido trisulfúrico	
25	Dicromato de sodio		66	Ácido ortosulfúrico	
26	Hidruro de aluminio		67	Yodito de sodio	
27	Nitrato de amonio		68	Clorito de zinc	
28	Cromato de cobre (III)		69	Telurato de cadmio	
29	Seleniato de cobalto (III)		70	Hidróxido de bismuto (V)	
30	Óxido de dicloro		71	Trióxidocarbonato de cobre	
31	Cloruro de hidrógeno		72	Tris(tetraóxidoclorato) de aluminio	
32	Telurato de plomo (IV)		73	Disulfato de potasio	
33	Hidróxido de platino (IV)		74	Perbromato de plomo (II)	
34	Cloruro de hierro(III)		75	nitrato de amonio	
35	Ácido hipobromoso		76	Sulfato de plomo (IV)	
36	Ácido bromhídrico		77	Ácido mangánico	
37	Ácido brómico		78	Ácido permangánico	
38	Hexafluoruro de azufre		79	Ácido dicrómico	
39	Tetraóxido de dinitrógeno		80	Tris[tetraoxidosulfato] de diníquel	
40	Bromato de amonio		81	Dicromato de aluminio	
41	Óxido de molibdeno(VI)		82	Yodato de cromo (III)	

2. Nombra las siguientes sustancias.

	Fórmula	Nomenclatura prefijos /estequiométrica	Nomenclatura de romanos / tradicional
1	HCl		
2	PtH ₄		
3	MnO ₂		
4	FeCl ₃		
5	CdO ₂		
6	HgO		
7	l ₂		
8	H ₂ S		
9	N ₂ O ₄		
10	BrF ₅		
11	H₂Te		
12	Asl ₅		
13	0		
14	CdI ₂		
15	SnBr ₄		
16	ZnS		
17	NO		
18	PbCl ₂		
19	SnO ₂		
20	PH ₃		
21	NH ₄ Cl		
22	SePb		
23	H₂S(aq)		
24	Co ₂ O ₃		
25	OCl ₂		
26	MnBr ₂		
27	Sn ⁴⁺		
28	HI _(aq)		
29	Bi O 2 5		
30	Ag ₂ O		
31	Crl ₃		
32	N ₂ O ₅		
33	Na OH		
34	H Cl		
35	H Cl O		
36	Cu SO ₄		
37	HNO ₃		
38	NH₄ CN		
39	NO ₂		
40	Na CN		
41	H CIO ₃		
42	MnO ₄		

43	Zn (OH) ₂	
44	Pb (OH) ₄	
45	Na NO₃	
46	SeO ₃ ²⁻	
47	IO ₃	
48	Cr ₂ O ₇	
49	H ₂ SO ₄	
50	H ₂ Se O ₃	
51	H NO ₃	
52	H ₂ CO ₃	
53	CCI ₄	
54	Hg O	
55	Ca (OH) ₂	
56	Na ClO	
57		
	MnO ₄ ²⁻	
58	H Mn O ₄	
59	H ₂ Cr ₂ O ₇	
60	H IO ₄	
61	K PO ₂	
62	Co (IO)₃	
63	Ni(BrO ₃) ₂	
64	Cd CO ₃	
65	H ₂ CrO ₄	
66	Fe ₃ (PO ₃) ₂	
67	Mg (IO ₂) ₂	
68	K Mn O ₄	
69	Fe Cr ₂ O ₇	
70	H ₃ PO ₃	
71	H ₂ S ₂ O ₇	
72	H ₃ NO ₄	
73	H ₂ Si ₃ O ₇	
74	H ₂ C ₂ O ₅	
75 76	Fe ₂ (SO ₄) ₃	
76 77	KCIO ₃ Fe (OH) ₂	
78		
78	Mg ₃ P ₂ NH ₄ OH	
80	H ₂ SO ₄	
80	112504	

ESTADOS DE OXIDACIÓN MÁS FRECUENTES

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Н										•							He
1	-1,1																	0
_	Li	Be											В	С	N	0	F	Ne
2	1	2											3	-4,	-3	-2	-1	0
	-												3	2,4	_	-2	-1	U
	Nio	D/I/a											ΔI	Si	1,2,3,4,5 P	S	CI	Ar
3	Na	Mg											Al					
	1	2											3	-4,	-3,	-2,	-1,	0
														2,4	1,3,5	2,4,6	1,3,5,7	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
•	1	2	3	2, 3, 4	2,3,	2, 3,	2,3,	2,3	2,3	2,3	1,2	2	3	-4,	-3	-2,	-1,	0
					4,5	6	4,6,7							2,4	1,3,5	2,4,6	1,3,5,7	
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
3	1	2	3	2,3,4	3,4,5	2,3,4,6	4,6,7	2,3,	2,3,	2,4	1	2	3	2,4	-3,	-2,	-1,	0
								4,7,8	4,6						1,3,5	2,4,6	1,3,5,7	
6	Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
3	1	2	3	3, 4	2,3,4,5	2, 3,	4,5,	2,3,	3,4	2,4	1,3	1,2	1,3	2,4	3,5	2,4	-1,	0
						4,6	6,7	4,7,8									1,3,5,7	
7	Fr	Ra	Ac	Rf														
	1	2	3	4														

Lantánidos	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Lantamuos	3,4	3	3	3	2,3	2,3	3	3	3	3	3	3	2,3	3
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actínidos	4	4,5	3,4,	3,4,	3,4,	3,4,	3	3,4	3	3	3	2,3	2,3	3
			5,6	5,6	5,6	5,6								

En color negro aparecen los que has de memorizar.