# **Ejercicios Resueltos del Tema 2**

### Ejercicio 1

Se ha pasado un test de 80 preguntas a 600 personas. El número de respuestas correctas se refleja en la siguiente tabla:

| RESPUESTAS | NÚMERO      |
|------------|-------------|
| CORRECTAS  | DE PERSONAS |
| [0, 10)    | 40          |
| [10, 20)   | 60          |
| [20, 30)   | 75          |
| [30, 40)   | 90          |
| [40, 50)   | 105         |
| [50, 60)   | 85          |
| [60, 70)   | 80          |
| [70, 80)   | 65          |

- a) Calcular la media, desviación media y desviación típica.
- b) Calcula la mediana, los cuartiles y los percentiles 20 y 85.
- c) ¿Cuál es el percentil de una persona que tiene 65 respuestas correctas?

#### Solución:

Hacemos las tablas de frecuencias:

| INTERVALO | Xi | $n_i$ | $N_{i}$ | $x_i \cdot n_i$ | $x_i^2 \cdot n_i$ | $ x_i - \overline{x}  \cdot n_i$ |
|-----------|----|-------|---------|-----------------|-------------------|----------------------------------|
| [0, 10)   | 5  | 40    | 40      | 200             | 1000              | 1506,67                          |
| [10, 20)  | 15 | 60    | 100     | 900             | 13500             | 1660,00                          |
| [20, 30)  | 25 | 75    | 175     | 1875            | 46875             | 1325,00                          |
| [30, 40)  | 35 | 90    | 265     | 3150            | 110250            | 690,00                           |
| [40, 50)  | 45 | 105   | 370     | 4725            | 212625            | 245,00                           |
| [50, 60)  | 55 | 85    | 455     | 4675            | 257125            | 1048,33                          |
| [60, 70)  | 65 | 80    | 535     | 5200            | 338000            | 1786,67                          |
| [70, 80)  | 75 | 65    | 600     | 4875            | 365625            | 2101,67                          |
|           |    | 600   |         | 25600           | 1345000           | 10363,33                         |

a) 
$$\bar{x} = \frac{25600}{600} = 42,67$$
  
 $\sigma^2 = \frac{1345000}{600} - 42,67^2 = 420,94 \Rightarrow \sigma = \sqrt{420,94} = 20,52$   
 $DM = \frac{10363,33}{600} = 17,27$ 

b)

• Para la mediana  $\rightarrow 600/2 = 300$ , luego voy al intervalo [40,50)  $Me = 40 + \frac{300 - 265}{370 - 265} \cdot 10 = 40 + 3,33 = 43,33$ 

• Para  $Q_1 \rightarrow 600/4 = 150$ , luego voy al intervalo [20, 30)

$$Q_1 = 20 + \frac{150 - 100}{175 - 100} \cdot 10 = 20 + 6,66 = 26,66$$

• Para  $Q_3 \rightarrow (3/4).600 = 450$ , luego voy al intervalo [50, 60)

$$Q_3 = 50 + \frac{450 - 370}{455 - 370} \cdot 10 = 50 + 9,41 = 59,41$$

• Para  $P_{20} \rightarrow (20/100) \cdot 600 = 120$ , luego voy al intervalo [20, 30)

$$P_{20} = 20 + \frac{120 - 100}{175 - 100} \cdot 10 = 20 + 2,66 = 22,66$$

• Para  $P_{85} \rightarrow (85/100) \cdot 600 = 510$ , luego voy al intervalo [60, 70)

$$P_{85} = 60 + \frac{510 - 455}{535 - 455} \cdot 10 = 60 + 8,88 = 68,88$$

c) 
$$65 = 60 + \frac{d - 455}{535 - 455} \cdot 10 \Rightarrow d = 495 \Rightarrow luego \ 495 = \frac{k}{100} \cdot 600 \Rightarrow k = 82,5$$

### Ejercicio 2

a) Completar los datos que faltan en la siguiente tabla estadística, donde n, N y f representan, respectivamente, la frecuencia absoluta, acumulada y relativa:

| X | n | N  | f    |
|---|---|----|------|
| 1 | 4 |    | 0,08 |
| 2 | 4 |    |      |
| 3 |   | 16 | 0,16 |
| 4 | 7 |    | 0,14 |
| 5 | 5 | 28 |      |
| 6 |   | 38 |      |
| 7 | 7 | 45 |      |
| 8 |   |    |      |

b) Calcula la media, mediana y moda de esta distribución

#### Solución

a) La frecuencia relativa de 1 es 0.08 = 4/N, de donde N = 50, lo que nos permite completar la tabla.

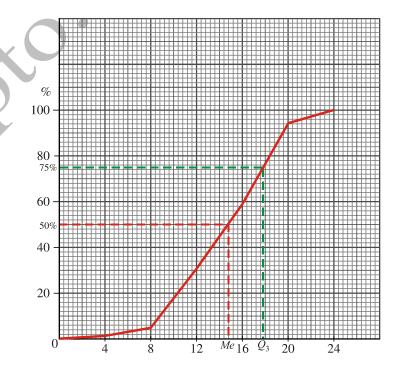
| X | n  | N  | f    |
|---|----|----|------|
| 1 | 4  | 4  | 0,08 |
| 2 | 4  | 8  | 0,08 |
| 3 | 8  | 16 | 0,16 |
| 4 | 7  | 23 | 0,14 |
| 5 | 5  | 28 | 0,10 |
| 6 | 10 | 38 | 0,20 |
| 7 | 7  | 45 | 0,14 |
| 8 | 5  | 50 | 0,10 |

b) la media  $\bar{x} = 4.76$ ; la mediana es 5 y la moda es 6.

# Ejercicio 3 (Resuelto por proporcionalidad en vez de formulas)

En una gasolinera estudian el número de vehículos que repostan a lo largo de un día, obteniendo:

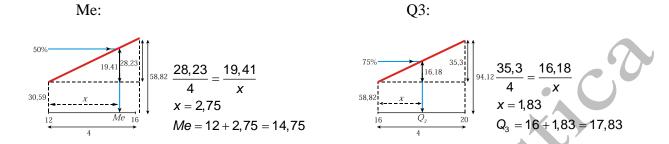
| HORAS          | [0, 4) | [4, 8) | [8, 12) | [12, 16) | [16, 20) | [20, 24) |
|----------------|--------|--------|---------|----------|----------|----------|
| № DE VEHÍCULOS | 6      | 14     | 110     | 120      | 150      | 25       |


Calcula Me y Q3.

#### Solución:

Construimos el polígono de frecuencias acumuladas:

| EXTREMOS | Fi  | en %  |
|----------|-----|-------|
| 0        | 0   | 0     |
| 4        | 6   | 1,41  |
| 8        | 20  | 4,71  |
| 12       | 130 | 30,59 |
| 16       | 250 | 58,82 |
| 20       | 400 | 94,12 |
| 24       | 425 | 100   |


### Gráficamente:



Aunque no se pide vemos gráficamente que

Me 
$$\approx$$
 14,8;  $Q_3 \approx 17,8$ 

Obtengamos los valores exactos, razonando sobre el polígono de frecuencias: (Lo hacemos aplicando proporcionalidad en el triangulo formado con el polígono de frecuencias)



Los valores exactos son: Me = 14,75;  $Q_3 = 17,83$ 

### Ejercicio 4

Observados los alquileres de un conjunto de despachos se ha obtenido:

| Alquileres en<br>miles de<br>pesetas | ni  |
|--------------------------------------|-----|
| [0,15)                               | 17  |
| [15,30)                              | 130 |
| [30,45)                              | 180 |
| [45,60)                              | 30  |
| [60,75)                              | 10  |
| [75,90)                              | 5   |

Calcula la moda y la mediana.

#### Solución:

Como los datos son agrupados tenemos:

• para la moda la fórmula:

$$Mo = l_{i-1} + \frac{n_i - n_{i-1}}{(n_i - n_{i-1}) + (n_i - n_{i+1})} \cdot a_i =$$

$$30 + \frac{180 - 130}{(180 - 30) + (180 - 130)} \cdot (45 - 30) = 30 + \frac{50}{200} \cdot 15 = 33,75$$

• Para la mediana usamos el polígono acumulativo de frecuencias:

| xi      | ni  | Ni  |
|---------|-----|-----|
| [0,15)  | 17  | 17  |
| [15,30) | 130 | 147 |
| [30,45) | 180 | 327 |

| [45,60) | 30 | 357 |
|---------|----|-----|
| [60,75) | 10 | 367 |
| [75,90) | 5  | 372 |

$$Me = l_{i-1} + \frac{\frac{n}{2} - N_{i-1}}{N_i - N_{i-1}} (l_i - l_{i-1}) = l_{i-1} + \frac{\frac{n}{2} - N_{i-1}}{n_i} \cdot a_i = 30 + \frac{186 - 147}{327 - 147} \cdot 15 = 33,25$$

### Ejercicio 5

Compara las desviaciones típicas de las distribuciones 1, 2, 3 y 4.



Al comparar dos de ellas, en caso de duda, pregúntate: ¿qué he de hacerle a ésta para que se parezca a la otra? Por ejemplo, para que la 1 se parezca a la 2, hemos de achicar las columnas extremas y aumentar la columna central. Por tanto, la 1 es más dispersa que la 2.

#### Solución:

De menor a mayor desviación típica, se ordenarían así: 2, 3, 1, 4.

### Ejercicio 6

En la siguiente distribución de notas, halla Me,  $Q_1,\,Q_3,\,P_{80},\,P_{90}$  y  $P_{99}$ 

| xi   | 1    | 2    | 3    | 4     | 5     | 6   | 7     | 8     | 9     | 10  |
|------|------|------|------|-------|-------|-----|-------|-------|-------|-----|
| ni   | 7    | 15   | 41   | 52    | 104   | 69  | 26    | 13    | 19    | 14  |
| Ni   | 7    | 22   | 63   | 115   | 219   | 288 | 314   | 327   | 346   | 360 |
| en % | 1,94 | 6,11 | 17,5 | 31,94 | 60,83 | 80  | 87,22 | 90,83 | 96,11 | 100 |

#### Solución:

Me = 
$$P_{50} = 5$$
;

$$Q_1 = P_{25} = 4;$$

$$Q_3 = P_{75} = 6;$$

$$P_{8o} = 6.5$$
;

$$P_{90} = 8;$$

$$P_{99} = 10$$

## Ejercicio 7

El peso medio de los alumnos de una clase es 58,2 kg y su desviación típica 3,1 kg. El de las alumnas de esa clase es 52,4 kg y su desviación típica es 5,1 kg. Calcula el coeficiente de variación y compara la dispersión de ambos grupos.

#### Solución:

C.V. (chicos) = 
$$\frac{3.1}{58.2} \cdot 100 = 5.33\%$$

C.V. (chicas) = 
$$\frac{5.1}{52.4} \cdot 100 = 9.73\%$$
 Hay mayor dispersión en el peso de las alumnas

# **Ejercicio 8**

Calcula media, moda, desviación típica, el coeficiente de asimetría y curtosis de la siguiente tabla de datos:

| Intervalo | xi | ni |
|-----------|----|----|
| (45,55]   | 50 | 6  |
| (55,65]   | 60 | 10 |
| (65,75]   | 70 | 19 |
| (75,85]   | 80 | 11 |
| (85,95]   | 90 | 4  |
|           | N= | 50 |

#### Solución:

| $L_{i}$                                   | $\overline{L}_{i}$ | $n_{i}$  | $\overline{N}_i$ | $\mathcal{X}_i$ | $n_i \bullet x_i$                          | $d_i$ | $n_i \cdot d_i^3$ | $n_i \cdot d_i^4$ |  |
|-------------------------------------------|--------------------|----------|------------------|-----------------|--------------------------------------------|-------|-------------------|-------------------|--|
| 45                                        | 55                 | 6        | 6                | 50              | 300                                        | -19,4 | -43808,304        | 849881,098        |  |
| 55                                        | 65                 | 10       | 16               | 60              | 600                                        | -9,4  | -8305,84          | 78074,896         |  |
| 65                                        | 75                 | 19       | 35               | 70              | 1330                                       | 0,6   | 4,104             | 2,4624            |  |
| 75                                        | 85                 | 11       | 46               | 80              | 880                                        | 10,6  | 13101,176         | 138872,466        |  |
| 85                                        | 95                 | 4        | 50               | 90              | 360                                        | 20,6  | 34967,264         | 720325,638        |  |
|                                           | N=                 | 50       |                  |                 | 3470                                       |       | -4041,6           | 1787156,56        |  |
| $\bar{x}$                                 |                    |          |                  | 0.              | $\frac{3470}{50} = 69.4$                   |       |                   |                   |  |
|                                           |                    | М        | 0=               |                 | 70.24                                      |       |                   |                   |  |
|                                           |                    | $\sigma$ | =                |                 | 11.029                                     |       |                   |                   |  |
| As=                                       |                    |          |                  |                 | $\frac{69.4 - 70.24}{11029} = -0,892$      |       |                   |                   |  |
| Coeficiente de Asimetría g <sub>1</sub> = |                    |          |                  | netría g₁=      | $\frac{-40416/50}{11.029^3} = -0,06025162$ |       |                   |                   |  |
| K=g <sub>2</sub>                          |                    |          |                  |                 | $\frac{1787156.566}{50} - 3 = -0,58431795$ |       |                   |                   |  |

Luego es una distribución asimétrica negativa o a la izquierda y Platicúrtica.