NUMBERSETS			INTERNAL OPERATIONS	
NAME	SYMBGL	EXAMPLES		
Natural numbers	N	1,2,3,4, 5, 6, 7, 2145, 10000...	+	
Integer numbers	Z	$\ldots,-100,-5,-2,-1,0,3,7, \ldots$	+	-
Rational numbers	Q	$-20,-\frac{9}{5},-1,0,2, \frac{3}{7}, 4, \ldots$	+	-
Real numbers	\mathfrak{R}	$\ldots,-\frac{9}{5},-\pi,-6,0,2, \frac{3}{7}, \sqrt{ } 3, \ldots$		$-\quad \sqrt{ } \uparrow$

Note: A real number is called "irrational" if it is not a rational number.
Note: in English, "whole numbers" means the set consisting of the natural numbers and the zero.

Decimal numbers are the same as real numbers:

- A decimal number with no digits on the right of the decimal point is an integer.
- A terminating decimal number or a repeating decimal number is a rational.
- A non-terminating, non-repeating decimal number is not a rational; it is catled an irrational number.

Note: In England, the symbol used to separate the integer part of a decimal number from its fractional part is a decimal point.

Location on the real line:

- Integers are placed leaving always the same distance between each number and the following. Zero is in the middle, positives are on the right and negatives are on the left. The numbers grow from left to right.
- _ A decimal number is pictured by repeatedly fractioning each unit into ten smaller-order units.

- Proper fractions are pictured dividing the unit into as many parts as the denominator tells and moving to the right (to the left, if negative) as many parts as the numerator tells.

- Improper fractions are first changed into mixed numbers. Then the fractional part is pictured on the unit segment foltowing the integer.
- Exact method to locate numbers like $\sqrt{n},(n \in Z)$ on the real line: consider $n=(\sqrt{n-1})^{2}+1^{2}$ so we can write $\sqrt{n}=\sqrt{(\sqrt{n-1})^{2}+1^{2}}$; apply Pythagoras Theorem to a right-angled triangle with short sides $\sqrt{n-1}$ and 1 ; the hypothenuse should be \sqrt{n}; use a pair of compasses to bring that measure down onto the real line.

$$
\sqrt{(\sqrt{2})^{2}+1^{2}}=\sqrt{2+1}=\sqrt{3}
$$

Intervals of real numbers
We need to be able to talk easily about certain subsets of \mathfrak{R}.
We say that $I \subset \mathfrak{R}$ is an open interval if $I=(a, b)=\{x \in \mathfrak{R} \mid a<x<b\}$ ("the numbers between a and b") We say that $I \subset \mathfrak{R}$ is a closed interval if $I=[a, b]=\{x \in \mathfrak{R} \mid a \leq x \leq b\}$ ("the previous plus a and b") We call half-open intervals to sets like these: $(a, b]=\{x \in \mathfrak{R} \mid a<x \leq b\}$ and $[a, b)=\{x \in \mathfrak{R} \mid a \leq x<b\}$

Note: an open interval excludes its end points, but contains all the points in between; in contrast a closed interval contains both its end points. It is trivial that $[a, b]=(a, b) \cup\{a\} \cup\{b\}$

The two end points a and b are points in \mathfrak{R}. It is sometimes convenient to allow also the possibility $a=-\infty$ and $b=+\infty$ to express infinite intervals (also called unbounded intervals): $(-\infty, b)=\{x \in \mathfrak{R} \mid x<b\} \quad(-\infty, b]=\{x \in \mathfrak{R} \mid x \leq b\} \quad(a,+\infty)=\{x \in \mathfrak{R} \mid a<x\} \quad[a,-\infty)=\{x \in \mathfrak{R} \mid a \leq x\}$ "numbers smaller than b " "b and the smaller than b " "numbers greater than a " a and the greater than a

Note: It is trivial that $\mathfrak{R}=(-\infty,+\infty)$
We can represent intervals on the real line: \qquad

(a, b)	$-a$	b
$[a, b]$	$-a$	b
$(a, b]$	$-a$	b
$[a, b)$	a	b

A fraction may be changed into a decimal number

When we divide numerator by denominator we can obtain:

- An integer number
- A terminating decimal number
- A repeating non-terminating decimal number (recurring decimal)

Note: Suppose the fraction is irreducible. If denominator is factorized in prime factors and these prime factors are only numbers two and/or five, the outcome will be a whole number or a terminating decimal number. Note: Suppose the fraction is irreducible. If denominator is factorized in prime factors and these prime factors are numbers two and/or five as well as any other numbers, the outcome will be a mixed recursive decimal number.
Note: Suppose the fraction is irreducible. If denominator is factorized in prime factors and these prime factors are numbers different from two or five, the outcome will be a repeating non-terminating decimal number with all the decimal part digits being recursive.

Some decimal numbers may be changed into fractions (rational numbers)

All rational numbers give decimal parts that either termınate or recur.
-A whole number
Write down the number divided by 1
-A terminating decimal number
Remove the decimal point and use the decimal number as the numerator.
The denominator is the number 1 followed by as many zeros as decimal places in the number.
Reduce the fraction.
-A repeating non-terminating decimal number (all the digits in the decimal part are recursive)
Count the number of digits that are repeating and write this power of ten
Multiply the decimal number by it and subtract the original number: it is the numerator Denominator $=$ the power of 10 minus 1
-A repeating non-terminating decimal number (there are no-repeating digits in the decimal part)
Count the number of decimal digits and write this power of ten
Count the number of digits that are not repeating and write this power of ten
Multiply the decimal number by both powers and subtract: it is the numerator
Denominator $=$ the difference between both powers of 10
Some decimal numbers can not be changed into fractions (irrational numbers)
The numbers whose decimal part continues forever with no pattern are irrational. They can not be changed into fractions.

- Some irrational numbers are trascendental numbers like π
$2 \quad$ The surds that are not terminating numbers are irrational $\sqrt{5}, \sqrt[3]{6}, \sqrt{\frac{2}{3}}$

EXERCISES

1) Write a rational number and an irrational number between M and N in each case:
a) $M=\frac{1}{2}$ and $N=\frac{1}{3}$
b) $\mathrm{M}=0.438$ and $\mathrm{N}=0.439$
c) $M=0, \overline{31}$ and $N=0, \overline{32}$
2) a) Locate the following numbers exactly on the real line: $-2 ; 3,75 ; \sqrt{5} ; 0,666 \ldots$
b) Locate the number $\Phi=1.618 \ldots$ approximately on the real line.
3) a) Write as an interval the set of numbers between 3 and 10 and represent it on the real line.
b) Write as an interval the set of numbers between 1 and 7, both of them included, and represent it on the real line.
c) Write as an interval the set of numbers between 2 and 21, number 21 included, and represent it on the real line.
d) Write as an interval the set of numbers between -2 and 0 , number -2 included and represent it on the real line.
e) Represent the set $[3,10]$ on the real line and define it (tell which real numbers are in it)
f) Represent the set (1,7] on the real line and define it (tell which real numbers are in it)
g) Represent the set $(3,10]$ on the real line and define it (tell which real numbers are in it)
h) Represent the set $(2,21)$ on the real line and define it (tell which real numbers are in it)
k) Represent the set $[3,10$) on the real line and define it (tell which real numbers are in it)
4) Represent the set $[-2,0]$ on the real line and define it (tell which real numbers are in it)
$\mathrm{m})$ Represent the set $(1,7)$ on the real line and define it (tell which real numbers are in it)
n) Represent the set $[1,7)$ on the real line and define it (tell which real numbers are in it)
o) Represent the set $[2,21$) on the real line and define it (tell which real numbers are in it)
p) Represent the set $[2,21]$ on the real line and define it (tell which real numbers are in it)
q) Represent the set $(-2,0)$ on the real line and define it (tell which real numbers are in it)
r) Represent the set $(-2,0]$ on the real line and define it (tell which real numbers are in it)
5) Change the following decimal numbers into fractions (cancelling as much as possible):
0.062510 .751 .024 0.888... $1.3535 \ldots$ 0.02525...
6) Order and locate on the real line the following numbers:
$\begin{array}{ll}-2.5 & 0.55\end{array}$

$$
\frac{-7}{3} \quad \frac{15}{6}
$$

0.5
0.49
6) Calculate and simplify: $\frac{4}{10}+\frac{3}{100}-\frac{5}{1000}+\frac{6}{10000}-\frac{345}{1000000}=$
7) Calculate and simplify:

$$
\text { a) } \frac{\left(0^{\prime} 45-1\right)^{2}-\left(0^{\prime} 333 \ldots-\frac{2}{3}\right)^{3}}{3 \cdot 10^{2}}=
$$

b) $\left(0^{\prime} 3232 \ldots-\frac{1}{3}\right) \cdot\left(\frac{2}{3}-4^{\prime} 5\right)+0^{\prime} 0455 \ldots\left(1-0^{\prime} 45\right) \cdot \frac{3}{5}=$
8) Which of these are irrational
numbers? $\{21 / 2,0.9,-3, \pi, \sqrt{11}\}$

Exponential notation.

- Exponential notation is a method of writing numbers that have many zeros.
- The basis of exponential notation is the power of ten.
- A number written in exponential notation has two parts.

The first part is a real number
The second part is a power of ten.
Examples:

$$
\begin{array}{ll}
15,600,000=156 \times 10^{5} & \text { or else } 156: 5 \\
0,0000000072=72 \times 10^{-10} & \text { or else } 72 E-10
\end{array}
$$

Scientific notation.

- Scientific notation is a method of writing very large and very small numbers.
- The basis of scientific notation is the power of ten.
- A number written in scientific notation has two parts.

The first part is a number between 1 and 10 called "mantissa".
$a \times 10^{n}$
where $1 \leq a<10$ and $n \in Z$.

$$
\begin{gathered}
15,653=1.5653 \times 10^{4} \\
0,0000000072=7.2 \times 10^{-9}
\end{gathered}
$$

orelse $1.5653 E 4$
or dele 7.2E-9

- Converting numbers into scientific notation

First move the decimal place so that only one integer is on the left side of the decimal.
Then, following the number, write a multiplication sign.
Then, the number 10 raised to the number of places you moved the ctecimal comma.
If the number is large, the exponent is positive, if the number is small the exponent is negative.

Calculators can deal with scientific notation by putting the calculator into scientific mode or by using the' button. (Or EE butom)

Fo get 3.1×10^{4}, press

Note: 6.4 . 8

This appears as 6.4^{08} on your screen. You have to understand that this is the calculator's way of writing 6.4×10^{8}. (It does not mean 6.4^{8} !)

EXERCISES

9) a) The mass of the electron is 0.00000000000000000000000091 Kg . approximately. Write this quantity in exponential notation.
b) Andromeda constelation is two million light-year far from Earth. Calculate that distance in Km and write it in scientific notation.
c) You have more than fourteen thousand million of neurons in your brain. Write this number in scientific notation.
10) Here are six numbers from science.

Write them in scientific notation:
(i) The nưrriber of years since the extinction of dinosaurs: 64000000
(ii) The speed of a dropped stone after three seconds (in metres per second): 29.43
(iii) The melting point of diamond (in degrees Celsius): 3500
(iv) The speed of sound in $\mathrm{km} / \mathrm{h}: 1190$
(v) The speed of light (in m/s): 300.000 .000
(vi) The diameter of the Earth (in metres): 12756000
11) Write these in the form $a \times 10^{n}$ where $l \leq a<10$ and $n \in Z$:
(i) 2600
(ii) 0.034
(iii) 51000
(iv) 0.005
(v) 610
(vi) 0.0002
(vii) 0.523 (viii) 5200000
(ix) 0.000000046
(x) 23000000 \qquad
\qquad
12) Write each of these as a decimal number:
(i) 7.1×10^{3}
(ii) 8.14×10^{5}
(iii) $9: 7 \times 10^{-3}$
(iv) 1.7×10^{-2}
(v) 2.85×10^{-1}
(vi) 7.74×10^{3}
(vii) 6×10^{-5}
(viii) 1×10^{-4}
'ix) 4×10^{-1}
(x) 2.5×10^{4}
13)Evalutate each of these and give the answer in scientific notation:
(i) $4.1 \times 10^{3}+3.5 \times 10^{2}$
(ii) $1.9 \times 10^{4}-4.5 \times 10^{3}$
(iii) $\left(2 \times 10^{3}\right) \times\left(3 \times 10^{4}\right)$
(iv) $\frac{5.1 \times 10^{8}}{3 \times 10^{3}}$
14) ${ }^{\text {Evaluate the following and give your }}$ answer in scientific notation:
(i) $\frac{8 \times 10^{5}}{2 \times 10^{2}}$
(ii) $\frac{6.3 \times 10^{7}}{3 \times 10^{3}}$
(iii) $\frac{8.5 \times 10^{5}}{5 \times 10^{1}}$
(iv) $\frac{4 \times 10^{6}}{8 \times 10^{2}}$
(v) $\frac{5.1 \times 10^{12}}{1.7 \times 10^{5}}$
(vi) $\frac{9.8 \cdot 10^{12}}{7.10^{3}}$
15) Evaluate these in scientific notation:
(i) $6.4 \times 10^{1}+9: 8 \times 10^{0}$
(ii) $5 \times 10^{-2}-8 \times 10^{-4}$
(iii) $\left(2.1 \times 10^{-3}\right)^{2}$
(iv) $\frac{3 \times 10^{5}}{5 \times 10^{-3}}$
16) Write these in the form $a \times 10^{n}$, where $1 \leq a<10$ and $n \in N$:
(i) $\frac{\left(2.1 \times 10^{2}\right) \times\left(4 \times 10^{7}\right)}{1.4 \times 10^{4}}$
(ii) $\frac{\left(1.6 \times 10^{5}\right) \cdot\left(9 \times 10^{2}\right)}{\left(1.2 \times 10^{2}\right) \cdot\left(4 \times 10^{1}\right)}$
17) Find the value of n if

$$
\frac{66}{0.011}=6 \times 10^{n} .
$$

b) Express $\frac{\left(2 \times 10^{3}\right)^{2}}{\left(5 \times 10^{-4}\right)}$ in the form 8×10^{n}, where $n \in Z$.
c) Find the value of n if
$\frac{0.056}{80}=7 \times 10^{n}$, where $n \in Z$.
e) Evaluate $\frac{200}{0.16}$ and write your answer in scientific notation.

> f) Evaluate $\frac{250}{0.005}$ and write your answer in scientific notation.
8) Add $14.38275+10.61 .725$ and write
your answer in the form $a \cdot 10^{n}$ where $1 \leq a<10, n \in N$.
d) Express $\frac{\left(4 \times 10^{-2}\right)^{3}}{\left(8 \times 10^{-4}\right)}$ as $a \times 10^{n}$ where $1 \leq a<10$ and $n \in Z$.

Accuracy

When expressing a number with respect to a fixed number of decimal places we are really deciding on the accuracy to which we want to work. One often uses the shorthand 'expressed to nD' to emphasise that a number has been expressed to n decimal places.
Examples: \quad expressed to 5 decimal places (expressed to 5D) $\quad 12.50913 \quad 94,267.609920 .00043$ expressed to 3 decimal places (expressed to 3D): $3.142 \quad 2.718 \quad 0.577$

Significant figures

Reading from the left the first non zero digit is the most significant and will be called the first significant digit. The digit to the right of the first significant digit is the second significant digit and so on. If we represent a number to \mathbf{n} significant digits we say it is 'displayed to $\mathbf{n S}$ '
$\begin{array}{lllll}\text { Examples: } & \text { expressed to } 5 \text { significant digits (expressed to 5S) } & 123.45 & 0.000032004 & 12.002\end{array}$
$\begin{array}{llll}\text { expressed to } 3 \text { significant digits (expressed to 3S) } & 0.000305 & 123000 & 1.06\end{array}$

Approximation

Often we wish to rewrite a number with less significant digits. There are two methods to do this.

- Chopping (one simply discards the superfluous digits)

Examples: $\quad 163.190385 \rightarrow 163.1903 \quad-34.978992 \rightarrow-34.9789 \quad 0.000299 \rightarrow 0.0002$
Rounding (we first chop the number at nD ; if the digit following the last significant digit was 5 or higher, we increase the last significant digit in one unit)
Examples: $\quad 163.190385 \rightarrow 163.1904$
$-34.978992 \rightarrow-34.9790$
$0.000299 \rightarrow 0.0003$
$26.288359 \rightarrow 26.2884$
$26.288459 \rightarrow 26.2885$

Error
When one has to deal with numbers which have been rounded, we keep note of the error involved.

Actual absolute error

Given some number X and its approximation x the actual absolute error is: $\quad \varepsilon=|\mathrm{X}-\mathrm{x}|$
The maximal absolute error for a number given to n decimal places (to nD) is $0.5 \times 10^{-\mathrm{n}}$
It is the maximal error bound.
Example: If we use 3.14159 as a decimal approximation of π, the actual absolute error is $|\pi-3.14159|$.
It is less than 0.000005 so this is the maximal error bound.
Actual relative error
Given some number X and its approximation \mathbf{x} the actual relative error is: $\quad r=\left|\frac{\varepsilon}{X}\right|=\left|\frac{X-x}{X}\right|$
The maximal relative error for a number given to n decimal places (to nD) is: $\frac{0.5 \times 10^{-n}}{|x|}$
It is the maximal relative error bound
Examples: 1) An absolute error of 0.5 is not very important if the number is $X=62,500$
But it is very high if the number is $\mathrm{X}=-2$
The relatives errors would be 0.000008 in the first approximation and 0.25 in the second.
2) If we use 3.14159 as a decimal approximation of π

The relative error would be less than $\frac{0.000005}{3.14159}$, so less than $1.592 \times 10^{-6}=0.000001592$

EXERCISES

18) a) Express to a sensible number of significant digits:

The number of visitors to an arts exhibition is
The number of participants in a demostration against pollution is
1,345,589
people. The number of bacteria living in 1 dm 3 of culture liquid is The number of water drops that are there in a water pool is 1,345,589 people. The number of grains that are there in a sack of sand is 203,305,123 bacteria $8,249,327,741$ drops 2,937,248 grains
b) Calculate the maximal error bound and the maximal relative error bound of the previous approximations
19)
a) If $€_{1}$ is worth $\$ 1.132$, find the value of $\$ 1$ correct to the nearest euro cent.
b) If $€ 1$ is worth 8.3624 Hong Kong dollars, find the value of 1 Hong Kong dollar, to the nearest euro-cent.
c) If 1 Canadian dollar is worth $€ 0.6173$, find the value of $€ 1$ in Canadian dollars (correct to two decimal places).
d) If a car uses up 0.077 litres of petrol in travelling 1 km , how many kilometres per litre does this car travel (to the nearest kilometre)?
e) If 1 pound $=2.2$ kilograms what is 1 kilogram equal to in pounds? Give your answer correct to three decimal places: \qquad
d) Evaluate $\frac{1}{3: 3^{3}}$ correct to four decimal places.
e) Calculate, correct to two decimal places $\frac{1}{5-0.833}$
f) Evaluate $\frac{1}{\sqrt{2.56}}$
21) Copy and complete the following table, giving the true answer correct to four decimal places.

Question	Approximation	Approximate answer	True answer
(i) $\frac{1}{4.848}$	$\frac{1}{5}$	0.2	
(ii) $\frac{1}{2.136}$	$\frac{1}{2}$		
(iii) $\frac{1}{4.232}$	-- -	-.. - -- ----	-.
$\text { (iv) } \frac{1}{8.039}$			
(v) $\frac{1}{9.888}$			

22) Evaluate $850\left(1+\frac{1}{11}\right)^{4}$, rounding your answer off to the nearest hundred.
23) a) If $p=4.375$, evaluate $\frac{1}{\sqrt{p}+p}$ correct to 4 decimal places.
b) If $x=7$ and $y=24$, evaluate

$$
\frac{1}{\sqrt{x^{2}+y^{2}}}
$$

c) Evaluate correct to one decimal

$$
\text { place } \sqrt{x^{2}+\frac{1}{x}} \text { if } x=0.7412
$$

d) Evaluate (correct to two decimal

$$
\text { places) } \frac{1}{x^{2}-\sqrt{x}} \text { if } x=2.74
$$

e) If $y=2.071$, evaluate $2 y^{3}+5 y^{1 / 2}$ correct to two decimal places.
f) If $x=8.32$, evaluate (correct to the nearest whole number) $\frac{1}{x}+\sqrt{x}$
g) If $y=7.472$, evaluate $\frac{1}{y^{2}+10}$ to three decimal places.
24) (i) Write $\frac{1}{81.3}$ in the form $a \times 10^{n}$, where $0 \leq a<10$ and $n \in Z$, writing a correct to two decimal places.
(ii) The mass of the Earth is 6×10^{24} kilograms, which is 81.3 times greater than the mass of the Moon.

Find the mass of the Moon in the form $a \times 10^{n}$ where $1 \leq a<10$, $n \in Z$, and a is written correct to two decimal places.
h) Evaluate $\frac{1}{p}+p^{2}+\sqrt{p}$ correct to one decimal place, if $p=2.532$.
i) Evaluate $\frac{1}{x}+x^{2}+\sqrt{x}$ correct to two decimal places, if $x=4.855$.
j) If $y=3.692$ evaluate $\frac{1}{y^{2}+\sqrt{y}}$ to four decimal places.
k) If $x=44.72$, find $\sqrt{\frac{1}{x}-\frac{1}{x^{2}}}$ correct to four decimal places.

1) Evaluate $\sqrt{\frac{1}{x}+\sqrt{y}+z^{2}}$
-- (correct to two decimal places) if $x=2.478 \times 10^{-1}, y=4.41 \times 10^{2}$ and $z=1.779$.
m) If $p=0.8756$, evaluate $\left(p^{-1}+p^{1 / 2}\right)$ correct to three decimal places.
a) (i) By writing each number correct to the nearest whole number, estimate the value of n where
$n=\frac{4 \sqrt{35.7}}{2.1+0.85}$
showing each step.
(ii) Evaluate n correct to three decimal places, ûsing a
b) (i) By writing each number correct to the nearest integer, estimate the value of p where

$$
p=\frac{(2.9)^{3}+\sqrt{25.2}}{2 \sqrt{4.08}}
$$

(ii) Evaluate p, correct to three decimal places, using a calculator. calculator.
c) (i) By writing each number to the nearest whole number, estimate the value of $k>0$, where $k^{2}=\frac{(4.038)^{3}+4(2.912)^{2}}{2 \sqrt{3.877}}$
(ii) Evaluate k correct to three decimal places, using a calculator.
26) a) If $x^{2}-\frac{1}{y}=z^{2}$,
(where x, y and z-are positive):
(i) write x in terms of y and z.
(ii) evaluate x, correct to one decimal place, if $y=2.222 \times 10^{-2}$ and $z=3.333$.
b) If $x\left(\sqrt{y}-y^{2}\right)=1$, evaluate x correct to two decimal places when $y=0.4874$.
c) If $a^{3}+b^{2}=\sqrt{\frac{1}{c}}$, evaluate b correct to two decimal places, when $b>0$, $a=0.9165$ and $c=0.5643$.
d) (i) By writing each number to the nearest whole number, estimate the value of t where
$=\frac{90.1}{5.89}+5.06 \sqrt{49.31}$.
(ii) Deduce an estimate for y if $2 y^{2}=t$ and $y>0$.
(iii) Find the value of y, correct to four decimal places if

$$
2 y^{2}=\frac{90.1}{5.89}+5.06 \sqrt{49.31}
$$

e) (i) If $x^{4}=\sqrt{y^{2}-1500}+5 z$, express y in terms of x and z, given that they are all positive numbers.
(ii) Evaluate y correct to two significant figures if $x=12.918$ and $z=105.106$.

- Exponents or 'powers' are a process of repeated multiplication.
- Exponents are normally written in the form a^{b}, where ' a ' is the base and ' b ' is the exponent.
- We pronounce a^{b} as ' a to the power of b ' or ' a to the b ' or ' a exponent b '.

When calculating with 'powers' use the following rules:
$a^{1}=a$
$a^{0}=1$
Same base
$a^{b} \cdot a^{c}=a^{b+c}$
$a^{b}: a^{c}=\frac{a^{b}}{a^{c}}=a^{b-c}$
Same exponent
$p^{b} \cdot q^{b}=(p \cdot q)^{b}$
$p^{b}: q^{b}=\frac{p^{b}}{q^{b}}=(p: q)^{b}=\left(\frac{p}{q}\right)^{b}$

Exponent of an exponent

$$
\left(a^{b}\right)^{c}=a^{b \cdot c}
$$

Negative exponents
$a^{-b}=\frac{1}{a^{b}}$
$\left(\frac{p}{q}\right)^{-b}=\left(\frac{q}{p}\right)^{b}$

Fractional exponents

$$
a^{\frac{1}{c}}=\sqrt[c]{a} \quad a^{\frac{b}{c}}=\sqrt[c]{a^{b}}
$$

$\mathrm{N}^{\text {th }}$ root of a number
The expression $\sqrt[n]{a}$ (" $\mathrm{n}^{\text {th }}$ root of a ") means: a number such that raised to the $\mathrm{n}^{\text {th }}$ power equals " a "

$$
\sqrt[n]{a}=R \Leftrightarrow R^{n}=a
$$

" a " is called the rooted
" n " is called the index (when index is 2 , it does not have to be written)
$\sqrt{ }$ is the radical bar
Examples:

$$
\begin{array}{lll}
\sqrt[5]{32}=2 & \text { because } & 2^{5}=32 \\
\sqrt[4]{81}=3 & \text { because } & 3^{4}=81 \\
\sqrt[3]{-125}=-5 & \text { because } & (-5)^{3}=-125 \\
\sqrt[3]{64}=4 & \text { because } & 4^{3}=64 \\
\sqrt{100}=10 & \text { because } & 10^{2}=100
\end{array}
$$

note: a 2 -index root is called "square root"
a 3-index root is called "cube root"
a 4-index root is called "fourth root", a 5-index root is called "fifth root", and so on.

Surds

A surd is and expression involving roots.
Sometimes it is useful to work with them, rather than using an approximate decimal value. Surds can be manipulated just like algebraic expressions.

When asked to give the exact value, approximate decimal answers will not do and you will have to manipulate surds in order to give a final answer in simplified surd form.

Example:

$$
\begin{array}{ll}
\sqrt[4]{3} \cdot \sqrt[4]{27}=1.31607 \cdot 2.27951=2.99999 & \text { is not exact } \\
\sqrt[4]{3} \cdot \sqrt[4]{27}=\sqrt[4]{3 \cdot 27}=\sqrt[4]{81}=3 & \text { is exact }
\end{array}
$$

Surds as indices
$A n^{\text {th }}$ root can be written as an exponent: $\quad \sqrt[n]{a}=a^{\frac{1}{n}}$
The laws of indices also apply to any $\mathrm{n}^{\text {th }}$ root. We can use these laws to manipulate surds.
note: $\quad \sqrt[n]{a^{p}}=a^{\frac{p}{n}} \quad$ as well

1. $\quad \sqrt[n p]{a^{p}}=\sqrt[n]{a} \quad$ as $\quad \sqrt[n p]{a^{p}}=a^{\frac{p}{n p}}=a^{\frac{1}{n}}=\sqrt[n]{a}$

Uses

- \quad Simplify radicals. For example: $\sqrt[4]{9}=\sqrt[4]{3^{2}}=\sqrt{3}$
- \quad Change surds to have the same index. For example to compare $\sqrt[3]{586}$ with $\sqrt{70}$:
$\sqrt[3]{586}=\sqrt[6]{586^{2}}=\sqrt[6]{343396}, \sqrt{70}=\sqrt[6]{70^{3}}=\sqrt[6]{343000}$ therefore, $\sqrt[3]{586}>\sqrt{70}$

2. $\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b} \quad$ as $\quad \sqrt[n]{a \cdot b}=(a \cdot b)^{\frac{1}{n}}=a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}=\sqrt[n]{a} \cdot \sqrt[n]{b}$

Uses

- Take a factor out of the radical. For example: $\sqrt{18}=\sqrt{9 \cdot 2}=\sqrt{9} \cdot \sqrt{2}=3 \sqrt{2}$
- Write two radicals under the same radical bar. For example: $\quad \sqrt{15} \cdot \sqrt{20}=\sqrt{15 \cdot 20}=\sqrt{300}$

3. $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad$ as $\quad \sqrt[n]{\frac{a}{b}}=\left(\frac{a}{b}\right)^{\frac{1}{n}}=\frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

Uses

- Together with rules number $\mathbf{1}$ and $\mathbf{2}$ this rule allows to write surds products and quotients under the same radical bar. For example: $\frac{\sqrt{3} \cdot \sqrt[3]{4}}{\sqrt[6]{24}}=\frac{\sqrt[6]{3^{3}} \cdot \sqrt[6]{4^{2}}}{\sqrt[6]{2^{3} \cdot 3}}=\sqrt[6]{\frac{3^{3} \cdot 2^{4}}{2^{3} \cdot 3}}=\sqrt[6]{2 \cdot 3^{2}}=\sqrt[6]{18}$

4. $(\sqrt[n]{a})^{p}=\sqrt[n]{a^{p}}$ as $(\sqrt[n]{a})^{p}=\left(a^{\frac{1}{n}}\right)^{p}=a^{\frac{1}{n} \cdot p}=\left(a^{p}\right)^{\frac{1}{n}}=\sqrt[n]{a^{p}}$
5. $\sqrt[m]{\sqrt[m]{a}}=\left(a^{\frac{1}{n}}\right)^{\frac{1}{m}}=a^{\frac{1}{n \cdot m}}=\sqrt[m \cdot n]{a} \quad$ as $\quad \sqrt[m]{\sqrt[n]{a}}=\sqrt[m \cdot n]{a}$
6. Two different surds can not be added unless you calculate their decimal approximations. Only alike surds can be added.
Cases

- For example: $\sqrt{3}+\sqrt{2}$ or $\sqrt{7}+\sqrt[3]{7}$ can only be solved by approximation or they should remain unsolved.
- $\quad 7 \sqrt{5}+11 \sqrt{5}-\sqrt{5} \quad$ certainly can be simplified to $\quad 17 \sqrt{5}$
- Sometimes the possibility that a surds addition can be simplified is hidden. For example:

$$
\sqrt{8}+\sqrt{18}+\sqrt[4]{2500}=\sqrt{2^{3}}+\sqrt{2 \cdot 3^{2}}+\sqrt[4]{2^{2} \cdot 5^{4}}=2 \sqrt{2}+3 \sqrt{2}+5 \sqrt{2}=10 \sqrt{2}
$$

7. Rationalising the denominator. Sometimes it is useful to get rid of surds from the bottom of a fraction. To do so, you have to multiply both numerator and denominator by a suitable expresion.
Examptes

- $\quad \frac{1}{\sqrt[3]{25}}=\frac{1}{\sqrt[3]{5^{2}}}=\frac{\sqrt[3]{5}}{\sqrt[3]{5^{2}} \cdot \sqrt[3]{5}}=\frac{\sqrt[3]{5}}{5}$
- $\frac{1}{5-\sqrt{3}}=\frac{5+\sqrt{3}}{(5-\sqrt{3})(5+\sqrt{3})}=\frac{5+\sqrt{3}}{5^{2}-(\sqrt{3})^{2}}=\frac{5+\sqrt{3}}{22}$
$\frac{\text { Notes: } \sqrt{a} \cdot \sqrt{a}=(\sqrt{a})^{2}=\sqrt{a^{2}}=a}{-(a+\sqrt{b}) \cdot(a-\sqrt{b})=a^{2}-b} \frac{(\sqrt{a}+\sqrt{b}) \cdot(\sqrt{a}-\sqrt{b})=a-b \sqrt{\sqrt[3]{a} \cdot \sqrt[3]{a^{2}}=a}}{}$

EXERCISES

27) Write $x \sqrt{x}$ as x^{q} where $q \in Q$.
28) Write each of these in the form \boldsymbol{a}^{q} where $q \in Q:$
(vi) $\frac{1}{a^{3}}$
(i) $a^{7} \times a^{2}$
(vii) $\frac{a^{11} \times a^{7}}{a^{3}}$
(ii) $\frac{a^{14}}{a^{2}}$
(iii) $\left(a^{7}\right)^{3}$
(viii) $\frac{a^{2}}{\sqrt{a}}$
(iv) \sqrt{a}
(ix) $a \sqrt{a}$
(v) $\sqrt[3]{a}$
(x) $\frac{a^{2}}{a^{-3}}$
29) Write each of these as x^{p}, where $p \in Q$.
(i) $\sqrt[4]{x}$
(ii) $\frac{x}{\sqrt{x}}$
(iii) $\frac{x^{3}}{\sqrt{x}}$
(iv) $\frac{\left(x^{-3}\right)\left(x^{4}\right)}{\left(x^{-7}\right)}$
(v) $(x \sqrt{x})^{3}$
(vi) $\sqrt{x} \sqrt[3]{x}$
(vii) $\sqrt[3]{x^{2}}$
(viii) $\sqrt{x^{3}}$
(ii) $\sqrt{x^{6}}$
(x) $\frac{\left(x^{5}\right)\left(x^{-7}\right)}{x^{4}}$
30) Write each of these as x^{p}, where $p \in Q$:
a) $\left(\sqrt[3]{x^{2}}\right)^{5}$
b) $\sqrt[15]{x^{6}}=$
c) $\sqrt{\frac{a^{13}}{a^{6}}}=$
d) $\sqrt[3]{\sqrt{x}}=$
e) $\sqrt[n]{\sqrt[m]{a^{k}}}=$
31)

a) Write $8 \sqrt{2}$
e) Write $\sqrt{49 x^{2} y^{6}}$ in the form $k x^{p} y^{q}$
-- in the form 2^{n} where $n \in Q$. where $k, p, q \in Q$.
b) Write $\frac{27 \sqrt{3}}{3}$
f) Write $\frac{125^{2 / 3} \times 5^{2}}{25 \times \sqrt{5}}$
in the form 3^{P} where $p \in Q$.
in the form 5^{p}, where $p \in Q$.
c) Write $\frac{4 \sqrt{2}}{32}$
h) Write $\frac{49 \sqrt{7}}{7(\sqrt[3]{7})}$
in the form 2^{q} where $q \in Q$.
d) Write $\frac{49 \sqrt{7}}{\sqrt[3]{7}}$
in the form $\underline{\underline{P}}$ where $p \in Q$.
32) Evaluate the following: g:
a) $625^{\overline{4}}=$
b) $64^{\frac{5}{6}}=$
33) Evaluate the following:

34) Put $<$, = or $>$ between each pair.
(i) $3^{4} \ldots 4^{3}$
(ii) $2^{4} \ldots 4^{2}$
(iii) $81^{1 / 2} \ldots\left(25^{1 / 2}+25^{1 / 2}\right)$
(iv) $\left(3^{2}+4^{2}\right) \ldots 5^{2}$
(v) $5^{1} \ldots 1^{5}$
(vi) $0^{2} \ldots 2^{0}$ \qquad
(vii) $\left(2^{7}\right)^{-3} \ldots 2^{7} \times 2^{3}$
(viii) $\frac{2^{12}}{2^{2}} \ldots 2^{6}$
(ix) $10^{0} \ldots 0$
(x) $7 \times 7^{3} \ldots 7^{4}$
(xi) $4^{1 / 2} \quad 4^{-2}$
(Xii) $\sqrt{(4)^{3}} \quad(\sqrt{4})^{3}$
(iii) $\left(\frac{1}{4}\right)^{-1}\left(\frac{1}{4}\right)^{-2}$
35) Are these true or false?
(i) $\left(x^{3}\right)^{2}=x^{5}$
(ii) $x^{3}=\frac{x^{6}}{x^{2}}$
(iii) $x \sqrt{x}=\left(x^{1 / 2}\right)^{3}$
(iv) $\left(2^{2}\right)\left(3^{3}\right)=6^{5}$
36) If $x=16$ and $y=9$ investigate

- $x^{1 / 2}+y^{1 / 2}=(x+y)^{1 / 2}$

37) Write these as surds:
a) $x^{\frac{7}{9}}=$
b) $\quad\left(m^{5} \cdot n^{5}\right)^{\frac{1}{3}}=$
c) $\quad a^{\frac{1}{2}} \cdot b^{\frac{1}{3}}=$
d) $\left[\left(x^{2}\right)^{\frac{1}{3}}\right]^{\frac{1}{5}}=$
38) Solve for x :

1. $2^{x}=4^{2}$	5. $5^{x-1}=\frac{25}{\sqrt{5}}$
2. $3^{x}=9 \sqrt{3}$	
3. $3^{x}\left(3^{7}\right)=3^{21}$	6. $\left(2^{x}\right)^{3}=\left(2^{7}\right)\left(2^{5}\right)$
4. $2^{x+1}=16 \sqrt{2}$	

10. $1000^{x}=10$
11. $4^{x}=1 / 2$ 16. $4\left(2^{x}\right)=\frac{16}{\sqrt{2}}$
12. $3^{x+2}=81$
13. $11^{x}=(121)^{3}$
14. $8^{x}=1 / 4$
15. $\frac{5^{x}}{\sqrt{5}}=125$
16. $32^{x}=8$
17. $4^{x+1}=2^{x-2}$
18. $9^{x}=\frac{1}{27}$
19. $9^{2 x+1}=3^{x-2}$
39) a) Find x and y if $3^{x+y}=9$ and $2^{x-y}=16$.
b) Find x and y if $9^{x}=27$ and $y=(100)^{x}$.
40)

a) Solve the simultaneous equations:

$$
3^{x+2 y}=1 \text { and } \frac{2^{x}}{2^{y}}=8
$$

b) Solve the simultaneous equations: $7^{x+2 y}=\frac{1}{7}$ and $4^{x}=\frac{1}{8^{y}}$
41) Simplify $\left(x^{1 / 2}-y^{1 / 2}\right)\left(x^{1 / 2}+y^{1 / 2}\right)$ and hence evaluate $\left(x^{1 / 2}-y^{1 / 2}\right)\left(x^{1 / 2}+y^{1 / 2}\right)$ when $x=7$ and $y=3$.
42) Evaluàte:
(i) $\sqrt{144}$
(ii) $2 \sqrt{49}$
(iii) $\sqrt{900}$
(iv) $5 \sqrt{400}$
(v) $\sqrt{9 / 16}$
43) Reduce these surds:
a) $\sqrt[12]{x^{9}}=$
b) $\quad \sqrt[12]{x^{8}}=$
c) $\sqrt[5]{y^{10}}=$
d) $\sqrt[6]{8}=$
e) $\quad \sqrt[9]{64}=$
f) $\quad \sqrt[8]{81}=$
44) Take as many factors as possible out of the following:
a) $\sqrt[3]{32 x^{4}}=$
b) $\sqrt[3]{81 a^{3} b^{5} c}=$
c) $\quad \sqrt[5]{64}=$
45) Reduce these surds:
(iii) $\sqrt{63}$
(i) $\sqrt{20}$
(iv) $\sqrt{75}$
(ii) $\sqrt{200}$
(v) $\sqrt{8}$
46) Simplify each of these as much as possible: a) $\sqrt{18}+\sqrt{50}-\sqrt{2}-\sqrt{8}=$
b) $\sqrt{50 a}-\sqrt{18 a}=$
47) Simplify each of these as much as
possible:
(i) $\sqrt{27}-\sqrt{3}$
(F i) $\sqrt{8}+\sqrt{18}$
(ii). $\sqrt{24}+\sqrt{54}$
(Yii$) \sqrt{32}+\sqrt{200}$
(iii) $\sqrt{98}-\sqrt{72}$
(Yiii) $\sqrt{300}-\sqrt{75}$
(iv) $\sqrt{28}+2 \sqrt{63}-\sqrt{7}$
(ix) $\sqrt{2}+\sqrt{50}-\sqrt{72}$
(v) $3 \sqrt{44}-\sqrt{99}$
(x) $\sqrt{40}+\sqrt{90}-\sqrt{160}$
48) Simplify:
a) $\sqrt[3]{2} \cdot \sqrt[5]{2}=$
b) $\sqrt[3]{9} \cdot \sqrt[6]{3}=$
c) $\quad \sqrt[10]{a^{4} \cdot b^{6}}=$
49) Simplify:
a) $\frac{\sqrt{9}}{\sqrt[3]{3}}=$
b) $\frac{\sqrt[5]{16}}{\sqrt{2}}=$
c) $\frac{\sqrt[4]{a^{3} b^{5} c}}{\sqrt{a b^{3} c^{3}}}=$
d) $\left(\sqrt[3]{a^{2}}\right)^{6}=$
e) $(\sqrt{x})^{3} \cdot \sqrt[3]{x}=$
f) $(\sqrt{\sqrt{\sqrt{2}}})^{8}=$
50) Simplify:
(i). $(2 \sqrt{3})(5 \sqrt{3})$
(vi) $2 \sqrt{3}(3 \cdot \sqrt{3}-1)$
(ii) $(\sqrt{2})(\sqrt{8})$
(Yii) $\sqrt{7}(3 \sqrt{2}-5 \sqrt{7})$
(iii) $(\sqrt{2})(\sqrt{10})$
(riii). $2 \sqrt{2}(4 \sqrt{2}-\sqrt{5})$
(iv) $(\sqrt{7})(\sqrt{14})$
(iix) $\sqrt{2}(2 \sqrt{32}-\sqrt{50})$
(v) $(2 \sqrt{6})(2 \sqrt{15})$
(X) $(\sqrt{5}-1)(\sqrt{5}+1)$
51)
2) $\overline{\text { Simplify }}(\sqrt{8-1)(\sqrt{2}+3)}$
b) Simplify $\frac{(3+\sqrt{5})(3-\sqrt{5})}{2}$
c) Evaluate $\frac{(\sqrt{11}+\sqrt{3})(\sqrt{11}-\sqrt{3})}{4}$
52) State if these are true or false:
(i) $\sqrt{3}+\sqrt{7}=\sqrt{10}$
(ii) $(\sqrt{11})(\sqrt{3})=\sqrt{33}$
(iii) $\sqrt{14}-\sqrt{6}=\sqrt{8}$
(iv) $\frac{\sqrt{14}}{\sqrt{2}}=\sqrt{7}$
53) Put $<,>$ or $=$ in each of the gaps:
(i) $\sqrt{2} \times \sqrt{3} \ldots \sqrt{6}$
(ii) $1 / 2 \sqrt{20} \ldots . \sqrt{10}$
(iii) $\sqrt{16}+\sqrt{9} \ldots \sqrt{16+9}$
(iv) $\sqrt{3}+\sqrt{12} \ldots \sqrt{27}$
(v) $1 / 4 \ldots \sqrt{1 / 4}^{1 / 4}$
(v) $\sqrt[3]{51} \ldots \sqrt[9]{132650}$
(vii) $\sqrt[4]{31} \ldots \sqrt[3]{13}$
54) Rationalise:
a) $\frac{5}{\sqrt[3]{2}}=$
b) $\frac{\sqrt{ } 5}{\sqrt{7}}=$
c) $\frac{3}{2-\sqrt{3}}=$
d) $\frac{4}{\sqrt{3}+\sqrt{2}}=$
e) $\frac{1}{\sqrt[5]{3^{2}}}=$
55) Write $(\sqrt{3}+2)^{2}$ in the form
$a+b \sqrt{3}$, where $a, b \in N$.
56) a) Use the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ to
find the roots of $x^{2}-4 x+1=0$ in
the form $a \pm \sqrt{b}$, where $a, b \in N$.
b) Find the roots of $x^{2}-2 x-6=0$ in the formt $a \pm \sqrt{b}$, where $a, b \in Z$.
c) (i) Find the roots of
$x^{2}-6 x+7=0$ in the form
$a \pm \sqrt{b}$, where $\boldsymbol{a}, \boldsymbol{b} \in Z$.
(ii) Find the sum of the two roots.
(iii) Find the product of the two
roots.
57) Use Pythagoras' Theorem to find the value of x in the diagram.

58) a). The area of a square is $200 \mathrm{~m}^{2}$. Find the length of each side, correct to the nearest centimetre.

b) The area of a square field is $50000 \mathrm{~m}^{2}$. Find the length of each side, correct to the nearest metre.

59)
a) If $a=79.5$ and $b=33.4$ investigate if $\sqrt{a-b}=\sqrt{a}-\sqrt{b}$.
(Take square roots correct to 3 decimal places.)
b) If $K=75.35$, investigate if $\sqrt{2 K}=2 \sqrt{K}$.
(Take square roots correct to two decimal places.)
c) If $a=1369$ and $b=1296$,
(i) find the values of \sqrt{a}, \sqrt{b} and $\sqrt{a-b}$.
(ii) show that $\sqrt{a-b}>\sqrt{a}-\sqrt{b}$
d) Given that $x=3969$ and $y=256$,
(i) find the value of $\sqrt{x}, \sqrt{y}, \sqrt{x+y}$
(ii) investigate if $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$!
e) Given that $x=21.46, y=33.12$,
(i) find (correct to 3 decimal places) the values of $\sqrt{x}, \sqrt{y}, \sqrt{x-y}$
(ii) investigate if $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$
60) Factorise the rooted and evaluate:
a) $\sqrt{324}$
b) $\sqrt{441}$
c) $\sqrt{1024}$
d) $\sqrt[3]{64}$
e) $\sqrt[4]{625}$
f) $\sqrt[3]{-1}$
g) $\sqrt[3]{-1000}$
h) $\sqrt[4]{10000}$
i) $\sqrt[5]{-32}$
k) $\sqrt[5]{243}$
l) $\sqrt[5]{100000}$
m) $\sqrt[10]{1024}$
n) $\sqrt{0^{\prime} 49}$
o) $\sqrt{0^{\prime} 04}$ p) $\sqrt{1^{\prime} 44}$
q) $\sqrt{0^{\prime} 0009}$
61) Evaluate:
a) $5 \sqrt{4}-6 \sqrt{9}-7 \sqrt{36}$
b) $7+3 \sqrt[3]{-8}$
c) $\sqrt{10+2 \sqrt{7+\sqrt[3]{8}}}$
d) $\sqrt{2 \cdot \sqrt[5]{4 \cdot \sqrt{64}}}$
e) $\sqrt{4^{\prime} 56-5 \sqrt{0^{\prime} 16}}$
62) Evaluate:
a) $\sqrt{225 \cdot 196 \cdot 16}$
b) $\sqrt{14400}$
c) $\sqrt{225: 25}$
d) $\sqrt{49: 0^{\prime} 0001}$ e) $\sqrt{6^{\prime} 25: 0^{\prime} 01}$
f) $\sqrt{\frac{1}{4}}-\sqrt{\frac{9}{25}}$
g) $2 \sqrt{\frac{9}{4}}+\sqrt{\frac{121}{100}}$
63) Simplify the following:
a) $6 \sqrt{3}-4 \sqrt{3}+5 \sqrt{3}$
b) $3 \sqrt{2}-3 \sqrt{8}+3 \sqrt{18}$
c) $7 \sqrt{18}-3 \sqrt{32}-\frac{3}{5} \sqrt{50}$
64) Simplify the following:
a) $\sqrt{8} \cdot \sqrt{5} \cdot \sqrt{10}$
b) $\sqrt{3} \cdot \sqrt{8} \cdot \sqrt{30} \cdot \sqrt{20}$
c) $\sqrt{12} \cdot \sqrt{\frac{3}{4}} \cdot \sqrt{\frac{12}{5}} \cdot \sqrt{\frac{15}{4}}$
d) $\sqrt[3]{\frac{5}{9}} \cdot \sqrt[3]{\frac{9}{2}} \cdot \sqrt[3]{\frac{25}{4}}$
e) $\sqrt{50}: \sqrt{18}$
f) $(\sqrt{2}+\sqrt{5})^{2}$
g) $(\sqrt{2}+\sqrt{5})(\sqrt{2}-\sqrt{5})$
h) $(\sqrt{2}-\sqrt{5})^{2}$
65) Reduce the following:
a) $\sqrt[3]{b^{6}}$
b) $\sqrt[4]{b^{6}}$
c) $\sqrt{a^{9}}$
d) $\sqrt{b^{15}}$
e) $\sqrt{27 a^{6}}$
f) $\sqrt{216}$
g) $\sqrt[20]{1024}$
h) $\sqrt[3]{162000}$
i) $\sqrt{81 \cdot a^{6} \cdot b^{5} \cdot c^{8}}$
k) $\sqrt[12]{729}$
l) $\sqrt[3]{\sqrt{7}}$
m) $\sqrt{2 \sqrt{2 \sqrt{2}}}$
n) $\sqrt{\sqrt[4]{512 \cdot a^{8} b^{10}}}$
ก̃) $\left(\sqrt{\sqrt{\sqrt{\sqrt{16 x^{2}}}}}\right)^{2}$
66) Rationalise and simplify:
a) $\frac{3 \sqrt{2}}{\sqrt{3}}$
b) $\frac{4+3 \sqrt{6}}{2 \sqrt{6}}$
c) $\frac{5 \sqrt{7}}{7 \sqrt{5}}$
d) $\frac{2-\sqrt{5}}{3-\sqrt{7}}$
e) $\frac{\sqrt{3}-\sqrt{6}}{\sqrt{3}+\sqrt{6}}$
f) $\frac{2 \sqrt{5}}{\sqrt{5}+\sqrt{6}}$
g) $\frac{3+\sqrt{3}}{2 \sqrt{3}+\sqrt{6}}$

