STRAND F: ALGEBRA

Unit F4 Solving Quadratic Equations

Text

Contents

Section

F4.1 Factorisation

* F4.2 Using the Formula
* F4.3 Completing the Square

F4 Solving Quadratic Equations

F4.1 Factorisation

Equations of the form

$$
a x^{2}+b x+c=0
$$

are called quadratic equations. Many can be solved using factorisation. If a quadratic equation can be written as

$$
(x-a)(x-b)=0
$$

then the equation will be satisfied if either bracket is equal to zero. That is,

$$
(x-a)=0 \quad \text { or } \quad(x-b)=0
$$

So there would be two possible solutions, $x=a$ and $x=b$.
Worked Example 1
Solve $x^{2}+6 x+5=0$.

Solution

Factorising gives

$$
(x+5)(x+1)=0
$$

So

$$
x+5=0 \quad \text { or } \quad x+1=0
$$

therefore

$$
x=-5 \quad \text { or } \quad x=-1
$$

Worked Example 2
Solve $x^{2}+5 x-14=0$.

Solution

Factorising gives

$$
(x-2)(x+7)=0
$$

So

$$
x-2=0 \quad \text { or } \quad x+7=0
$$

therefore

$$
x=2 \quad \text { or } \quad x=-7
$$

Worked Example 3
Solve $x^{2}-12 x=0$.

Solution

Factorising gives

$$
x(x-12)=0
$$

So

$$
x=0 \quad \text { or } \quad x-12=0
$$

therefore

$$
x=0 \quad \text { or } \quad x=12
$$

Worked Example 4

Solve

$$
4 x^{2}-81=0
$$

Solution

Factorising gives

$$
(2 x-9)(2 x+9)=0
$$

So

$$
2 x-9=0 \quad \text { or } \quad 2 x+9=0
$$

therefore

$$
\begin{array}{rlrl}
x & =\frac{9}{2} \quad \text { or } \quad x & =-\frac{9}{2} \\
& =4 \frac{1}{2} & & =-4 \frac{1}{2}
\end{array}
$$

Worked Example 5

Solve $x^{2}-4 x+4=0$.

Solution

Factorising gives

$$
(x-2)(x-2)=0
$$

So

$$
x-2=0 \quad \text { or } \quad x-2=0
$$

therefore

$$
x=2 \quad \text { or } \quad x=2
$$

This type of solution is often called a repeated solution and results from solving a perfect square, that is

$$
(x-2)^{2}=0
$$

Most of these examples have had two solutions, but the last example had only one solution.

The graphs below show

The curve crosses the x-axis at

$$
x=-5 \text { and } x=-1 .
$$

These are the solutions of

$$
x^{2}+6 x+5=0
$$

and
$y=x^{2}-4 x+4$.

The curve touches the x-axis at

$$
x=2
$$

This is the solution of

$$
x^{2}-4 x+4=0
$$

Exercises

1. Solve the following quadratic equations.
(a) $x^{2}+x-12=0$
(b) $x^{2}-2 x-15=0$
(c) $x^{2}+4 x-12=0$
(d) $x^{2}+6 x=0$
(e) $3 x^{2}-4 x=0$
(f) $4 x^{2}-9 x=0$
(g) $\quad x^{2}-9=0$
(h) $x^{2}-49=0$
(i) $9 x^{2}-64=0$
(j) $x^{2}-8 x+16=0$
(k) $x^{2}+10 x+25=0$
(1) $x^{2}-3 x-18=0$
(m) $x^{2}-11 x+28=0$
(n) $x^{2}+x-30=0$
(o) $x^{2}-14 x+40=0$
(p) $2 x^{2}+7 x+3=0$
(q) $2 x^{2}+5 x-12=0$
(r) $3 x^{2}-7 x+4=0$
(s) $\quad 4 x^{2}+x-3=0$
(t) $2 x^{2}+5 x-3=0$
(u) $2 x^{2}-19 x+35=0$
2. The equations of a number of curves are given below. Find where each curve crosses the x-axis and use this to draw a sketch of the curve.
(a) $y=x^{2}+6 x+9$
(b) $y=x^{2}-4$
(c) $y=2 x^{2}-3 x$
(d) $y=x^{2}+x-12$
3. Use the difference of two squares result to solve the following equations.
(a) $x^{4}-16=0$
(b) $x^{4}-625=0$
4. Find the lengths of each side of the following rectangles.
(a)
$x-2 \begin{gathered}\text { Area }=21 \\ x+2\end{gathered}$
(b)

(c)

(d)

5. The height of a ball thrown straight up from the ground into the air at time, t, is given by

$$
h=8 t-10 t^{2}
$$

Find the time it takes for the ball to go up and fall back to ground level.
6. The diagram represents a shed.

The volume of the shed is given by the formula

$$
V=\frac{1}{2} L W(E+R)
$$

(a) Make L the subject of the formula, giving your answer as simply as possible.

The surface area, A, of the shed, is given by the formula

$$
A=2 G L+2 E L+W(E+R)
$$

where $V=500, A=300, E=6$ and $G=4$.
(b) By substituting these values into the equations for V and A show that L satisfies the equation

$$
L^{2}-15 L+50=0
$$

Make the steps in your working clear.
(c) Solve the equation $L^{2}-15 L+50=0$.

F4.2 Using the Formula

The formula given below is particularly useful for quadratics which cannot be factorised. To prove this important result requires some quite complex analysis, using a technique called completing the square, which is the subject of Section F4.3.

Theorem

The solutions of the quadratic equation

$$
a x^{2}+b x+c=0
$$

are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Proof

The equation $a x^{2}+b x+c=0$ is first divided by the non-zero constant, a, giving

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

Note that

$$
\begin{aligned}
\left(x+\frac{b}{2 a}\right)^{2} & =\left(x+\frac{b}{2 a}\right)\left(x+\frac{b}{2 a}\right) \\
& =x^{2}+\frac{b x}{2 a}+\frac{b x}{2 a}+\left(\frac{b}{2 a}\right)^{2} \quad \text { (expanding) } \\
& =x^{2}+\frac{2 b x}{2 a}+\left(\frac{b}{2 a}\right)^{2} \quad \text { (adding like terms) } \\
& =x^{2}+\frac{b x}{a}+\left(\frac{b}{2 a}\right)^{2} \quad \text { (simplifying) }
\end{aligned}
$$

The first two terms are identical to the first two terms in our equation, so you can re-write the equation as

$$
\begin{aligned}
\left(x+\frac{b}{2 a}\right)^{2} & -\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a}=0 \\
\left(x+\frac{b}{2 a}\right)^{2} & =\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a} \\
& =\frac{b^{2}}{4 a^{2}}-\frac{c}{a}
\end{aligned}
$$

$$
\text { i.e. } \quad\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

Taking the square root of both sides of the equation gives

$$
\begin{aligned}
x+\frac{b}{2 a} & = \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& =\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Hence

$$
\begin{aligned}
x & =-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
\text { or } \quad x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

as required.

Worked Example 1

Solve

$$
x^{2}+6 x-8=0
$$

giving the solution correct to 2 decimal places.

Solution

Here $a=1, b=6$ and $c=-8$. These values can be substituted into

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

to give

$$
\begin{aligned}
x & =\frac{-6 \pm \sqrt{6^{2}-(4 \times 1 \times-8)}}{2 \times 1} \\
& =\frac{-6 \pm \sqrt{68}}{2} \\
& =\frac{-6+\sqrt{68}}{2} \text { or } \frac{-6-\sqrt{68}}{2} \\
& =1.12 \quad \text { or }-7.12 \quad \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

Worked Example 2

Solve the quadratic equation

$$
4 x^{2}-12 x+9=0 .
$$

Solution

Here $a=4, b=-12$ and $c=9$. Substituting the values into

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

gives

$$
\begin{aligned}
x & =\frac{12 \pm \sqrt{(-12)^{2}-(4 \times 4 \times 9)}}{2 \times 4} \\
& =\frac{12 \pm \sqrt{144-144}}{8} \\
& =\frac{12 \pm \sqrt{0}}{8} \\
& =\frac{12}{8} \quad\left(=\frac{3}{2}\right) \\
& =1.5
\end{aligned}
$$

Worked Example 3

Solve the quadratic equation

$$
x^{2}+x+5=0
$$

Solution

Here $a=1, b=1$ and $c=5$. Substituting the values into the formula gives

$$
\begin{aligned}
x & =\frac{-1 \pm \sqrt{1^{2}-(4 \times 1 \times 5)}}{2 \times 1} \\
& =\frac{-1 \pm \sqrt{1-20}}{2} \\
& =\frac{-1 \pm \sqrt{-19}}{2}
\end{aligned}
$$

As it is not possible to find $\sqrt{-19}$, this equation has no solutions.

These three examples illustrate that a quadratic equation can have 2,1 or 0 solutions. The graphs below illustrate these graphically and show how the number of solutions depends on the sign of $\left(b^{2}-4 a c\right)$ which is part of the quadratic formula.

Two solutions
$b^{2}-4 a c>0$
(Worked Example 1)

One solution
$b^{2}-4 a c=0$
(Worked Example 2)

No solutions
$b^{2}-4 a c<0$
(Worked Example 3)

Exercises

1. Use the quadratic equation formula to find the solutions, where they exist, of each of the following equations. Give answers to 2 decimal places.
(a) $4 x^{2}-7 x+3=0$
(b) $2 x^{2}+x-10=0$
(c) $9 x^{2}-6 x-11=0$
(d) $3 x^{2}-5 x-7=0$
(e) $x^{2}+x-8=0$
(f) $4 x^{2}-6 x-9=0$
(g) $2 x^{2}+17 x-9=0$
(h) $x^{2}-14 x=0$
(i) $x^{2}+2 x-10=0$
(j) $3 x^{2}+8 x-1=0$
(k) $x^{2}+6=0$
(1) $2 x^{2}-8 x+3=0$
(m) $4 x^{2}-5 x-3=0$
(n) $5 x^{2}-4 x+12=0$
(o) $x^{2}-6 x-5=0$
2. A ticket printing and cutting machine cuts rectangular cards which are 2 cm longer than they are wide.
(a) If x is the width of a ticket, find an expression for the area of the ticket.
(b) Find the size of a ticket with an area of $10 \mathrm{~cm}^{2}$.
3. A window manufacturer makes a range of windows for which the height is 0.5 m greater than the width.
Find the width and height of a window with an area of $2 \mathrm{~m}^{2}$.
4. The height of a stone launched from a catapult is given by

$$
h=20 t-9.8 t^{2}
$$

where t is the time after the moment of launching.
(a) Find when the stone hits the ground.
(b) For how long is the stone more than 5 m above the ground?
(c) Is the stone ever more than 12 m above ground level?
(d) If m is the maximum height of the stone, write down a quadratic equation which involves m. Explain why this equation has only one solution and use this fact to find the value of m, to 2 decimal places.
5. The equation below is used to find the maximum amount, x, which a bungee cord stretches during a bungee jump:

$$
m g x+m g l-\frac{1}{2} k x^{2}=0
$$

where $\quad m=$ mass of bungee jumper
$l=$ length of rope when not stretched $\quad(10 \mathrm{~m})$
$k=$ stiffness constant
$g=$ acceleration due to gravity
$\left(10 \mathrm{~ms}^{-2}\right)$
(a) Find the maximum amount that the cord stretches for a bungee jumper of mass 60 kg .
(b) How much more would the cord stretch for a person of mass 70 kg ?
6. Solve the equation $x^{2}=5 x+7$, giving your answers correct to 3 significant figures.

F4.3 Completing the Square

Completing the square is a technique which can be used to solve quadratic equations that do not factorise. It can also be useful when finding the minimum or maximum value of a quadratic.
A general quadratic $a x^{2}+b x+c$ is written in the form $a(x+p)^{2}+q$ when
completing the square. You need to find the constants p and q so that the two expressions are identical.

Worked Example 1

Complete the square for $x^{2}+10 x+2$.

Solution

First consider the $x^{2}+10 x$. These terms can be obtained by expanding $(x+5)^{2}$.
But

$$
\begin{aligned}
(x+5)^{2} & =x^{2}+10 x+25 \\
x^{2}+10 x & =(x+5)^{2}-25
\end{aligned}
$$

so
Therefore

$$
\begin{aligned}
x^{2}+10 x+2 & =(x+5)^{2}-25+2 \\
& =(x+5)^{2}-23
\end{aligned}
$$

Worked Example 2

Complete the square for $x^{2}+6 x-8$.

Solution

To obtain $x^{2}+6 x$ requires expanding $(x+3)^{2}$.
But
so

$$
\begin{aligned}
& (x+3)^{2}=x^{2}+6 x+9 \\
& x^{2}+6 x=(x+3)^{2}-9
\end{aligned}
$$

Therefore

$$
\begin{aligned}
x^{2}+6 x-8 & =(x+3)^{2}-9-8 \\
& =(x+3)^{2}-17
\end{aligned}
$$

Note
When completing the square for $x^{2}+b x+c$, the result is

$$
x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c
$$

and for $a \neq 0$,

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c
$$

Worked Example 3

Complete the square for $3 x^{2}+6 x+7$.

Solution

As a first step, the quadratic can be rearranged as shown below.

$$
3 x^{2}+6 x+7=3\left(x^{2}+2 x\right)+7
$$

Then note that

$$
x^{2}+2 x=(x+1)^{2}-1
$$

SO

$$
\begin{aligned}
3\left(x^{2}+2 x\right)+7 & =3\left[(x+1)^{2}-1\right]+7 \\
& =3(x+1)^{2}-3+7 \\
& =3(x+1)^{2}+4
\end{aligned}
$$

Worked Example 4

(a) Complete the square for $y=2 x^{2}-8 x+2$.
(b) Find the minimum value of y.
(c) Sketch the graph of $y=2 x^{2}-8 x+2$.

Solution

(a) First rearrange the quadratic as shown.

$$
2 x^{2}-8 x+2=2\left(x^{2}-4 x\right)+2
$$

Then $x^{2}-4 x$ can be written as $(x-2)^{2}-4$ to give

$$
\begin{aligned}
2\left(x^{2}-4 x\right)+2 & =2\left[(x-2)^{2}-4\right]+2 \\
& =2(x-2)^{2}-8+2 \\
& =2(x-2)^{2}-6
\end{aligned}
$$

(b) As $y=2(x-2)^{2}-6$, the minimum possible value of y is -6 , which is obtained when $x-2=0$ or $x=2$.
(c) Before sketching the graph, it is also useful to find where the curve crosses the x-axis, that is when $y=0$. To do this, solve

$$
\begin{aligned}
0 & =2(x-2)^{2}-6 \\
2(x-2)^{2} & =6 \\
(x-2)^{2} & =3 \\
x-2 & = \pm \sqrt{3} \\
x & =2 \pm \sqrt{3}
\end{aligned}
$$

So the curve crosses the x-axis at $2+\sqrt{3}$ and $2-\sqrt{3}$, and has a minimum at $(2,-6)$.

This is shown in the graph opposite.

Worked Example 5

(a) Express $3 x^{2}+2 x+1$ in the form $a(x+p)^{2}+q$ where a, p and q are real numbers.
(b) Hence, determine for $\mathrm{f}(x)=3 x^{2}+2 x+1$
(i) the minimum value for $\mathrm{f}(x)$
(ii) the equation of the axis of symmetry.

Solution

(a) $3 x^{2}+2 x+1=a(x+p)^{2}+q$

$$
\begin{aligned}
& =a\left(x^{2}+2 p x+p^{2}\right)+q \\
& =a x^{2}+2 a p x+\left(a p^{2}+q\right)
\end{aligned}
$$

Equating coefficients:

$$
\begin{aligned}
& \left.\left[x^{2}\right] \quad \begin{array}{rl}
3 & =a \quad \Rightarrow a=3 \\
{[x]} & 2
\end{array}\right] \\
& {\left[c^{t}\right] \quad 2 a p \Rightarrow p=\frac{2}{2 a}=\frac{1}{3}} \\
& 1
\end{aligned}
$$

Thus

$$
3 x^{2}+2 x+1=3\left(x+\frac{1}{3}\right)^{2}+\frac{2}{3}
$$

(b) (i) Minimum value of $y=3 x^{2}+2 x+1$ will occur when $x+\frac{1}{3}=0$; that is, $x=-\frac{1}{3}$, and the value is $y=\frac{2}{3}$.
(ii)

$x=-\frac{1}{3}$ is the equation of the axis of symmetry.

Exercises

1. Complete the square for each of the expressions below.
(a) $x^{2}+4 x-5$
(b) $x^{2}+6 x-1$
(c) $x^{2}+10 x-2$
(d) $x^{2}-8 x+2$
(e) $x^{2}+12 x+3$
(f) $x^{2}-20 x+10$
(g) $\quad x^{2}+3 x-1$
(h) $x^{2}-5 x+2$
(i) $x^{2}-x+4$
2. Use the completing the square method to solve each of the following equations.
(a) $x^{2}-4 x+3=0$
(b) $x^{2}-6 x-4=0$
(c) $x^{2}+10 x-8=0$
(d) $x^{2}+5 x+1=0$
(e) $x^{2}+x-1=0$
(f) $x^{2}+2 x-4=0$
(g) $x^{2}+4 x-8=0$
(h) $x^{2}+5 x-2=0$
(i) $x^{2}+7 x+1=0$
3. Complete the square for each of the following expressions.
(a) $2 x^{2}+8 x-1$
(b) $2 x^{2}+10 x-3$
(c) $2 x^{2}+2 x+1$
(d) $3 x^{2}+6 x-2$
(e) $5 x^{2}+15 x-4$
(f) $7 x^{2}-14 x+2$
(g) $3 x^{2}+12 x-4$
(h) $4 x^{2}+20 x-3$
(i) $2 x^{2}-12 x+3$
4. Solve each of the following equations by completing the square.
(a) $2 x^{2}+4 x-5=0$
(b) $2 x^{2}+16 x-3=0$
(c) $3 x^{2}+12 x-8=0$
(d) $4 x^{2}+2 x-1=0$
(e) $2 x^{2}+x-6=0$
(f) $5 x^{2}-20 x+1=0$
5. Sketch the graph of each equation below, showing its minimum or maximum point and where it crosses the x-axis.
(a) $y=x^{2}-2 x-1$
(b) $y=x^{2}+6 x+8$
(c) $y=x^{2}-10 x+24$
(d) $y=x^{2}+5 x-14$
(e) $y=4+3 x-x^{2}$
(f) $y=3 x-2-x^{2}$
6. The height of a ball thrown into the air is given by

$$
h=1+20 t-10 t^{2}
$$

Find the maximum height reached by the ball.
7. (a) By writing the quadratic expression

$$
x^{2}-4 x+2
$$

in the form $(x+a)^{2}+b$, find a and b and hence find the minimum value of the expression.
(b) Solve the equation

$$
x^{2}-4 x+2=0
$$

giving your answers correct to 2 decimal places.
8. (a) Factorise the expression $x^{2}+2 x-3$.
(b) Express $x^{2}+2 x-3$ in the form $(x+a)^{2}-b$, where a and b are whole numbers.
(c) Sketch the curve with equation $y=x^{2}+2 x-3$.
9. (a) Express the function $f(x)=2 x^{2}-4 x-13$ in the form

$$
f(x)=a(x+h)^{2}+k
$$

Hence, or otherwise, determine
(b) the values of x at which the graph cuts the x-axis.
(c) the interval for which $f(x) \leq 0$
(d) the minimum value of $f(x)$
(e) the value of x at which $f(x)$ is a minimum.
10. (a) If $4 y^{2}+3 y+b$ is a perfect square, calculate the value of b.
(b) By the method of completing the square, solve the equation $5 y^{2}=8 y-2$. Give your answers to 3 significant figures.

Information
The word 'quadratic' comes from the Latin word 'quadratum', which means 'a squared figure'.

